7,194 research outputs found

    An optimal fixed-priority assignment algorithm for supporting fault-tolerant hard real-time systems

    Get PDF
    The main contribution of this paper is twofold. First, we present an appropriate schedulability analysis, based on response time analysis, for supporting fault-tolerant hard real-time systems. We consider systems that make use of error-recovery techniques to carry out fault tolerance. Second, we propose a new priority assignment algorithm which can be used, together with the schedulability analysis, to improve system fault resilience. These achievements come from the observation that traditional priority assignment policies may no longer be appropriate when faults are being considered. The proposed schedulability analysis takes into account the fact that the recoveries of tasks may be executed at higher priority levels. This characteristic is very important since, after an error, a task certainly has a shorter period of time to meet its deadline. The proposed priority assignment algorithm, which uses some properties of the analysis, is very efficient. We show that the method used to find out an appropriate priority assignment reduces the search space from O(n!) to O(n/sup 2/), where n is the number of task recovery procedures. Also, we show that the priority assignment algorithm is optimal in the sense that the fault resilience of task sets is maximized as for the proposed analysis. The effectiveness of the proposed approach is evaluated by simulation

    Awaking the vacuum with spheroidal shells

    Full text link
    It has been shown that well-behaved spacetimes may induce the vacuum fluctuations of some nonminimally coupled free scalar fields to go through a phase of exponential growth. Here, we discuss this mechanism in the context of spheroidal thin shells emphasizing the consequences of deviations from spherical symmetry.Comment: 10 pages, 7 figures. Minor changes, version published on Phys. Rev.

    From quantum to classical instability in relativistic stars

    Full text link
    It has been shown that gravitational fields produced by realistic classical-matter distributions can force quantum vacuum fluctuations of some nonminimally coupled free scalar fields to undergo a phase of exponential growth. The consequences of this unstable phase to the background spacetime have not been addressed so far due to known difficulties concerning backreaction in semiclassical gravity. It seems reasonable to believe, however, that the quantum fluctuations will "classicalize" when they become large enough, after which backreaction can be treated in the general-relativistic context. Here we investigate the emergence of a classical regime out of the quantum field evolution during the unstable phase. By studying the appearance of classical correlations and loss of quantum coherence, we show that by the time backreaction becomes important the system already behaves classically. Consequently, the gravity-induced instability leads naturally to initial conditions for the eventual classical description of the backreaction. Our results give support to previous analyses which treat classically the instability of scalar fields in the spacetime of relativistic stars, regardless whether the instability is triggered by classical or quantum perturbations.Comment: 16 pages. Minor changes to match the published versio

    A TLA+ Formal Specification and Verification of a New Real-Time Communication Protocol

    Get PDF
    AbstractWe describe the formal specification and verification of a new fault-tolerant real-time communication protocol, called DoRiS, which is designed for supporting distributed real-time systems that use a shared high-bandwidth medium. Since such a kind of protocol is reasonably complex and requires high levels of confidence on both timing and safety properties, formal methods are useful. Indeed, the design of DoRiS was strongly based on formal methods, where the TLA+ language and its associated model-checker TLC were the supporting design tool. The protocol conception was improved by using information provided by its formal specification and verification. In the end, a precise and highly reliable protocol description is provided

    Compositional abstractions of hybrid control systems

    Get PDF
    Abstraction is a natural way to hierarchically decompse the analysis and design of hybrid systems. Given a hybrid control system and some desired properties, one extracts and abstracted system while preserving the properties of interest. Abstractions of purely discrete systems is a mature area, whereas abstractions of continuous systems is a recent activity. In this paper we present a framework for abstraction that applies to discrete, continuous, and hybrid syustems. We introduce a composition operator that allows to build complex hybrid systems from simpler ones and show compatibility between abstractions and this compositional operator. Besides unifying the existing methodologies we also propose constructions to obtain abstractions of hybrid control systems

    Feasible Formations of Multi-Agent Systems

    Get PDF
    Formations of multi-agent systems, such as satellites and aircraft, require that individual agents satisfy their kinematic equations while constantly maintaining inter-agent constraints. In this paper, we develop a systematic framework for studying formations of multiagent systems. In particular, we consider undirected formations for centralized formations and directed formations for decentralized formations. In each case, we determine differential geometric conditions that guarantee formation feasibility given the individual agent kinematics. Our framework also enables us to extract a smaller control system that describes the formation kinematics while maintaining all formation constraints

    Feasible Formations of Multi-Agent Systems

    Get PDF
    Formations of multi-agent systems, such as satellites and aircraft, require that individual agents satisfy their kinematic equations while constantly maintaining inter-agent constraints. In this paper, we develop a systematic framework for studying formations of multiagent systems. In particular, we consider undirected formations for centralized formations and directed formations for decentralized formations. In each case, we determine differential geometric conditions that guarantee formation feasibility given the individual agent kinematics. Our framework also enables us to extract a smaller control system that describes the formation kinematics while maintaining all formation constraints

    Considerations on the Least Upper Bound for Mixed-Criticality Real-Time Systems

    Get PDF
    5th Brazilian Symposium on Computing Systems Engineering, SBESC 2015 (SBESC 2015). 3 to 6, Nov, 2015. Foz do Iguaçu, Brasil.Real-time mixed-criticality systems (MCS) are designed so that tasks with different criticality levels share the same computing platform. Scheduling mechanisms must ensure that high criticality tasks are safe independently of lower criticality tasks’ behaviour. In this paper we provide theoretical schedulability properties for MCS by showing that: (a) the least upper bound on processor utilisation of MCS is in general null for both uniprocessor and multiprocessor platforms; (b) this bound lies in interval [ln 2, 2( √2 − 1)] if higher criticality tasks do not have periods larger than lower criticality ones; and (c) if the task of these uniprocessor systems have harmonic periods, the least upper bound reaches 1

    Efficient schedulability tests for real-time embedded systems with urgent routines

    Get PDF
    Task scheduling is one of the key mechanisms to ensure timeliness in embedded real-time systems. Such systems have often the need to execute not only application tasks but also some urgent routines (e.g. error-detection actions, consistency checkers, interrupt handlers) with minimum latency. Although fixed-priority schedulers such as Rate-Monotonic (RM) are in line with this need, they usually make a low processor utilization available to the system. Moreover, this availability usually decreases with the number of considered tasks. If dynamic-priority schedulers such as Earliest Deadline First (EDF) are applied instead, high system utilization can be guaranteed but the minimum latency for executing urgent routines may not be ensured. In this paper we describe a scheduling model according to which urgent routines are executed at the highest priority level and all other system tasks are scheduled by EDF. We show that the guaranteed processor utilization for the assumed scheduling model is at least as high as the one provided by RM for two tasks, namely 2(2√−1). Seven polynomial time tests for checking the system timeliness are derived and proved correct. The proposed tests are compared against each other and to an exact but exponential running time test
    • …
    corecore