38 research outputs found

    Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data

    Get PDF
    The nine countries sharing the Amazon forest accounted for 89% of all malaria cases reported in the Americas in 2008. Remote sensing can help identify the environmental determinants of malaria transmission and their temporo-spatial evolution. Seventeen studies characterizing land cover or land use features, and relating them to malaria in the Amazon subregion, were identified. These were reviewed in order to improve the understanding of the land cover/use class roles in malaria transmission. The indicators affecting the transmission risk were summarized in terms of temporal components, landscape fragmentation and anthropic pressure. This review helps to define a framework for future studies aiming to characterize and monitor malaria

    Air-filled substrate-integrated waveguide technology for broadband and highly-efficient photonic-enabled antenna systems

    Get PDF
    The combination of microwave photonics, radio-over-fiber (RoF) and air-filled substrate-integrated-waveguide (AFSIW) technology opens many promising pathways to realize robust, broadband, and highly-integrated multi-antenna systems that address the stringent demands of (beyond-)5G wireless applications. In this paper, we demonstrate the potential of such a multi-disciplinary approach by discussing three designs. First, two AFSIW-based photonic-enabled remote antenna units (RAUs) are presented for downlink sub-6GHz RoF. By adopting an extensive full-wave/circuit co-simulation model, the power transfer between the optical and electrical domain is maximized. In the first design, this is done by using a Chebyshev impedance matching network, while the second design exploits conjugate matching. Second, a hybrid integration strategy for compact, broadband and highly efficient mmWave antennas is introduced. Its excellent performance is proven by realizing an on-chip AFSIW stacked patch antenna. In addition, the design facilitates compact integration of the opto-electronic front-end, making it attractive for the realization of next-generation photonic-enabled mmWave planar multi-antenna systems
    corecore