991 research outputs found
Underlying modal data issues for detecting damage in truss structures
Independent of the modal identification techniques employed for damage detection, use of measured modal data limits the expectations for damage location. These limitations are examined using the distribution of modal strain energy and the sensitivity of the frequency and mode shapes to structural stiffness changes. For given measured modal information of specific accuracy, this examination reveals the following: (1) damage detection is feasible for members that contribute significantly to the strain energy of the measured modes, (2) the modes which are most effective in detecting damage to certain critical members can be identified, and (3) a relationship can be drawn between the accuracy of the measured modes and frequencies and damage detection feasibility
Biochemical disorders induced by cytotoxic marine natural products in breast cancer cells as revealed by proton NMR spectroscopy-based metabolomics
International audienceMarine plants and animals are sources of a huge number of pharmacologically active compounds, some of which exhibit antineoplastic activity of clinical relevance. However the mechanism of action of marine natural products (MNPs) is poorly understood. In this study, proton NMR spectroscopy-based metabolomics was applied to unravel biochemical disorders induced in human MCF7 breast cancer cells by 3 lead candidate anticancer MNPs: ascididemin (Asc), lamellarin-D (Lam-D), and kahalalide F (KF). Asc, Lam-D, and KF provoked a severe decrease in DNA content in MCF7 cells after 24h treatment. Asc and Lam-D provoked apoptosis, whereas KF induced non-apoptotic cell death. Metabolite profiling revealed major biochemical disorders following treatment. The response of MCF7 tumor cells to Asc involved the accumulation of citrate (Ă—17 the control level, <0.001), testifying enzyme blockade in citrate metabolism, and the accumulation of gluconate (Ă—9.8, <0.005), a metabolite never reported at such concentration in tumor cells, probably testifying glycolysis shutdown. The response to Lam-D involved the accumulation of aspartate (Ă—7.2, <0.05), glutamate (Ă—14.7, <0.05), and lactate (Ă—2.3, <0.05), probably in relation with the targeting of the malate-aspartate shuttle, as discussed. The response to KF involved increased lipid accumulation (polyunsaturated fatty acids Ă—9.8, <0.05), and phospholipid and acetate derivative alterations. Altogether, this study demonstrates the potential of proton NMR spectroscopy-based metabolomics to help uncover metabolic targets and elucidate the mechanism of cytotoxicity of candidate antineoplastic MNPs
So near and yet so far: Harmonic radar reveals reduced homing ability of nosema infected honeybees
Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen - Nosema ceranae (Microsporidia) - on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed
So near and yet so far: Harmonic radar reveals reduced homing ability of nosema infected honeybees
Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen - Nosema ceranae (Microsporidia) - on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed
Inducing Neurite Outgrowth by Mechanical Cell Stretch
Establishing extracellular milieus to stimulate neuronal regeneration is a critical need in neuronal tissue engineering. Many studies have used a soluble factor (such as nerve growth factor or retinoic acid [RA]), micropatterned substrate, and electrical stimulation to induce enhanced neurogenesis in neuronal precursor cells. However, little attention has been paid to mechanical stimulation because neuronal cells are not generally recognized as being mechanically functional, a characteristic of mechanoresponsive cells such as osteoblasts, chondrocytes, and muscle cells. In this study, we performed proof-of-concept experiments to demonstrate the potential anabolic effects of mechanical stretch to enhance cellular neurogenesis. We cultured human neuroblastoma (SH-SY5Y) cells on collagen- coated membrane and applied 10% equibiaxial dynamic stretch (0.25 Hz, 120 min/d for 7 days) using a Flexcell device. Interestingly, cell stretch alone, even without a soluble neurogenic stimulatory factor (RA), produced significantly more and longer neurites than the non–RA-treated, static control. Specific neuronal differentiation and cytoskeletal markers (e.g., microtubule-associated protein 2 and neurofilament light chain) displayed compatible variations with respect to stretch stimulation
Treatment Options for Paediatric Anaplastic Large Cell Lymphoma (ALCL): Current Standard and beyond.
Anaplastic Lymphoma Kinase (ALK)-positive Anaplastic Large Cell Lymphoma (ALCL), remains one of the most curable cancers in the paediatric setting; multi-agent chemotherapy cures approximately 65-90% of patients. Over the last two decades, major efforts have focused on improving the survival rate by intensification of combination chemotherapy regimens and employing stem cell transplantation for chemotherapy-resistant patients. More recently, several new and 'renewed' agents have offered the opportunity for a change in the paradigm for the management of both chemo-sensitive and chemo-resistant forms of ALCL. The development of ALK inhibitors following the identification of the EML4-ALK fusion gene in Non-Small Cell Lung Cancer (NSCLC) has opened new possibilities for ALK-positive ALCL. The uniform expression of CD30 on the cell surface of ALCL has given the opportunity for anti-CD30 antibody therapy. The re-evaluation of vinblastine, which has shown remarkable activity as a single agent even in the face of relapsed disease, has led to the consideration of a revised approach to frontline therapy. The advent of immune therapies such as checkpoint inhibition has provided another option for the treatment of ALCL. In fact, the number of potential new agents now presents a real challenge to the clinical community that must prioritise those thought to offer the most promise for the future. In this review, we will focus on the current status of paediatric ALCL therapy, explore how new and 'renewed' agents are re-shaping the therapeutic landscape for ALCL, and identify the strategies being employed in the next generation of clinical trials
Recommended from our members
Prenatal Maternal Stress Predicts Childhood Asthma in Girls: Project Ice Storm
Little is known about how prenatal maternal stress (PNMS) influences risks of asthma in humans. In this small study, we sought to determine whether disaster-related PNMS would predict asthma risk in children. In June 1998, we assessed severity of objective hardship and subjective distress in women pregnant during the January 1998 Quebec Ice Storm. Lifetime asthma symptoms, diagnoses, and corticosteroid utilization were assessed when the children were 12 years old (N = 68). No effects of objective hardship or timing of the exposure were found. However, we found that, in girls only, higher levels of prenatal maternal subjective distress predicted greater lifetime risk of wheezing (OR = 1.11; 90% CI = 1.01–1.23), doctor-diagnosed asthma (OR = 1.09; 90% CI = 1.00–1.19), and lifetime utilization of corticosteroids (OR = 1.12; 90% CI = 1.01–1.25). Other perinatal and current maternal life events were also associated with asthma outcomes. Findings suggest that stress during pregnancy opens a window for fetal programming of immune functioning. A sex-based approach may be useful to examine how prenatal and postnatal environments combine to program the immune system. This small study needs to be replicated with a larger, more representative sample
Recommended from our members
TGF-β Signaling Initiated in Dendritic Cells Instructs Suppressive Effects on Th17 Differentiation at the Site of Neuroinflammation
While the role of Transforming Growth Factor β (TGF-β) as an intrinsic pathway has been well established in driving de novo differentiation of Th17 cells, no study has directly assessed the capacity of TGF-β signaling initiated within dendritic cells (DCs) to regulate Th17 differentiation. The central finding of this study is the demonstration that Th17 cell fate during autoimmune inflammation is shaped by TGF-β extrinsic pathway via DCs. First, we provide evidence that TGF-β limits at the site of inflammation the differentiation of highly mature DCs as a means of restricting Th17 cell differentiation and controlling autoimmunity. Second, we demonstrate that TGF-β controls DC differentiation in the inflammatory site but not in the priming site. Third, we show that TGF-β controls DC numbers at a precursor level but not at a mature stage. While it is undisputable that TGF-β intrinsic pathway drives Th17 differentiation, our data provide the first evidence that TGF-β can restrict Th17 differentiation via DC suppression but such a control occurs in the site of inflammation, not at the site of priming. Such a demarcation of the role of TGF-β in DC lineage is unprecedented and holds serious implications vis-à -vis future DC-based therapeutic targets
Mass seasonal bioflows of high-flying insect migrants
Migrating animals have an impact on ecosystems directly via influxes of predators, prey, and competitors and indirectly by vectoring nutrients, energy, and pathogens. Although linkages between vertebrate movements and ecosystem processes have been established, the effects of mass insect "bioflows" have not been described. We quantified biomass flux over the southern United Kingdom for high-flying (>150 meters) insects and show that ~3.5 trillion insects (3200 tons of biomass) migrate above the region annually. These flows are not randomly directed in insects larger than 10 milligrams, which exploit seasonally beneficial tailwinds. Large seasonal differences in the southward versus northward transfer of biomass occur in some years, although flows were balanced over the 10 year period. Our long-term study reveals a major transport process with implications for ecosystem services, processes, and biogeochemistry
- …