40 research outputs found

    Polygenic risk scores for prediction of breast cancer risk in Asian populations.

    Get PDF
    PURPOSE: Non-European populations are under-represented in genetics studies, hindering clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs using the largest available studies of Asian ancestry and to assess the transferability of PRS across ethnic subgroups. METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases). RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk. CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry

    European polygenic risk score for prediction of breast cancer shows similar performance in Asian women

    Get PDF
    Abstract: Polygenic risk scores (PRS) have been shown to predict breast cancer risk in European women, but their utility in Asian women is unclear. Here we evaluate the best performing PRSs for European-ancestry women using data from 17,262 breast cancer cases and 17,695 controls of Asian ancestry from 13 case-control studies, and 10,255 Chinese women from a prospective cohort (413 incident breast cancers). Compared to women in the middle quintile of the risk distribution, women in the highest 1% of PRS distribution have a ~2.7-fold risk and women in the lowest 1% of PRS distribution has ~0.4-fold risk of developing breast cancer. There is no evidence of heterogeneity in PRS performance in Chinese, Malay and Indian women. A PRS developed for European-ancestry women is also predictive of breast cancer risk in Asian women and can help in developing risk-stratified screening programmes in Asia

    WBP2 inhibits microRNA biogenesis via interaction with the microprocessor complex

    No full text
    10.26508/lsa.202101038Life Science Alliance47e20210103

    Strategy for Safe Bronchoscopy during COVID pandemic.

    No full text
    10.1016/j.athoracsur.2021.09.034Ann Thorac Sur

    Quantification of hepatic steatosis in chronic liver disease using novel automated method of second harmonic generation and two-photon excited fluorescence

    No full text
    Abstract The presence of hepatic steatosis (HS) is an important histological feature in a variety of liver disease. It is critical to assess HS accurately, particularly where it plays an integral part in defining the disease. Conventional methods of quantifying HS remain semi-quantitative, with potential limitations in precision, accuracy and subjectivity. Second Harmonic Generation (SHG) microscopy is a novel technology using multiphoton imaging techniques with applicability in histological tissue assessment. Using an automated algorithm based on signature SHG parameters, we explored the utility and application of SHG for the diagnosis and quantification of HS. SHG microscopy analysis using GENESIS (HistoIndex, Singapore) was applied on 86 archived liver biopsy samples. Reliability was correlated with 3 liver histopathologists. Data analysis was performed using SPSS. There was minimal inter-observer variability between the 3 liver histopathologists, with an intraclass correlation of 0.92 (95% CI 0.89–0.95; p < 0.001). Good correlation was observed between the histopathologists and automated SHG microscopy assessment of HS with Pearson correlation of 0.93: p < 0.001. SHG microscopy provides a valuable tool for objective, more precise measure of HS using an automated approach. Our study reflects proof of concept evidence for potential future refinement to current conventional histological assessment

    Sustained activation of non-canonical NF-κB signalling drives glycolytic reprogramming in doxorubicin-resistant DLBCL

    No full text
    DLBCL is the most common lymphoma with high tumor heterogeneity. Treatment refractoriness and relapse from R-CHOP therapy in patients remain a clinical problem. Activation of the non-canonical NF-κB pathway is associated with R-CHOP resistance. However, downstream targets of non-canonical NF-κB mediating R-CHOP-induced resistance remains uncharacterized. Here, we identify the common mechanisms underlying both intrinsic and acquired resistance that are induced by doxorubicin, the main cytotoxic component of R-CHOP. We performed global transcriptomic analysis of (1) a panel of resistant versus sensitive and (2) isogenic acquired doxorubicin-resistant DLBCL cell lines following short and chronic exposure to doxorubicin respectively. Doxorubicin-induced stress in resistant cells activates a distinct transcriptional signature that is enriched in metabolic reprogramming and oncogenic signalling. Selective and sustained activation of non-canonical NF-κB signalling in these resistant cells exacerbated their survival by augmenting glycolysis. In response to doxorubicin, p52-RelB complexes transcriptionally activated multiple glycolytic regulators with prognostic significance through increased recruitment at their gene promoters. Targeting p52-RelB and their targets in resistant cells increased doxorubicin sensitivity in vitro and in vivo. Collectively, our study uncovered novel molecular drivers of doxorubicin-induced resistance that are regulated by non-canonical NF-κB pathway. We reveal new avenues of therapeutic targeting for R-CHOP-treated refractory/relapsed DLBCL patients.Nanyang Technological UniversityNational Medical Research Council (NMRC)National Research Foundation (NRF)Submitted/Accepted versionThis study is funded by the National Research Foundation (NRF) Singapore, under its Singapore NRF Fellowship (NRFNRFF2018-04). In addition, we thank the Nanyang Assistant Professorship (NAP) Startup-grant to Y.L. lab and National Medical Research Council (NMRC-OFLCG18May0028), Tanoto Foundation and Ling Foundation for their support

    Potential and technological advancement of biofuels

    No full text
    This scientific paper examines the feasibility of biofuels as a solution to the world's energy crisis. It studies the development of the four different generations of biofuel that have been discerned over the years, determining the pros and cons of each. The paper further investigates the issues concerning each generation, and determines how their successors have solved and improved on those problems. In order to give the reader an unbiased perspective, the paper studies both general advantages and disadvantages that encompasses social, economic and environmental impacts. Research and development on the first two generations of biofuels have matured, and case studies have been used to allude to their current applications. The challenge of making third and fourth generation biofuels economically viable has also been highlighted due to their significant environmental and production benefits over the first two generations. The prospects of third and fourth generation biofuels have also been looked into to determine its outlook in the near future. If these next generation biofuels can garner enough support and become cost-competitive, mankind's quest for an alternative, renewable source of energy may finally be completed

    Second harmonic generation microscopy provides accurate automated staging of liver fibrosis in patients with non-alcoholic fatty liver disease

    No full text
    <div><p>Background</p><p>Assessment of severity of liver fibrosis is essential in the management of non-alcoholic fatty liver disease (NAFLD). Second Harmonic Generation (SHG) microscopy is a novel optical tissue imaging system that provides automated quantification of fibrosis based on unique architectural features of collagen. This study aims to develop and validate a SHG-based index for automated staging of liver fibrosis in patients with NAFLD.</p><p>Methods</p><p>SHG microscopy was performed on archived liver biopsy specimens from 83 patients with NAFLD. A unique algorithm was developed to identify specific SHG parameters that correlated with fibrosis stage. The accuracy of the algorithm was compared against clinical assessment by experienced liver histopathologists using the Brunt fibrosis staging and further validated using the leave-one-out cross-validation method.</p><p>Results</p><p>Mean age of the study cohort was 51.8 ± 11.7 years, with 41% males. A fibrosis index (SHG B-index) was developed comprising 14 unique SHG-based collagen parameters that correlated with severity of NAFLD fibrosis in a continuous fashion. The SHG B-index had excellent correlation with Brunt fibrosis stage (Spearman’s correlation 0.820, p<0.001). AUROCs for prediction of Brunt fibrosis stages 1, 2, 3 and 4 were 0.853, 0.967, 0.985 and 0.941 respectively. In the cross-validation analysis, the SHG B-index demonstrated high specificity for diagnosis of all grades of fibrosis. A SHG B-index score of >1.76 had an overall diagnostic accuracy of 98.5% for prediction of presence of bridging fibrosis (Brunt stage ≥3) with sensitivity of 87.5%, specificity 98.0%, positive predictive value 96.6% and negative predictive value 92.6%.</p><p>Conclusion</p><p>The SHG B-index is a unique SHG-based index that provides accurate automated assessment of fibrosis stage in NAFLD patients.</p></div
    corecore