778 research outputs found
POIBERT: A Transformer-based Model for the Tour Recommendation Problem
Tour itinerary planning and recommendation are challenging problems for
tourists visiting unfamiliar cities. Many tour recommendation algorithms only
consider factors such as the location and popularity of Points of Interest
(POIs) but their solutions may not align well with the user's own preferences
and other location constraints. Additionally, these solutions do not take into
consideration of the users' preference based on their past POIs selection. In
this paper, we propose POIBERT, an algorithm for recommending personalized
itineraries using the BERT language model on POIs. POIBERT builds upon the
highly successful BERT language model with the novel adaptation of a language
model to our itinerary recommendation task, alongside an iterative approach to
generate consecutive POIs.
Our recommendation algorithm is able to generate a sequence of POIs that
optimizes time and users' preference in POI categories based on past
trajectories from similar tourists. Our tour recommendation algorithm is
modeled by adapting the itinerary recommendation problem to the sentence
completion problem in natural language processing (NLP). We also innovate an
iterative algorithm to generate travel itineraries that satisfies the time
constraints which is most likely from past trajectories. Using a Flickr dataset
of seven cities, experimental results show that our algorithm out-performs many
sequence prediction algorithms based on measures in recall, precision and
F1-scores.Comment: Accepted to the 2022 IEEE International Conference on Big Data
(BigData2022
A Transformer-based Framework for POI-level Social Post Geolocation
POI-level geo-information of social posts is critical to many location-based
applications and services. However, the multi-modality, complexity and diverse
nature of social media data and their platforms limit the performance of
inferring such fine-grained locations and their subsequent applications. To
address this issue, we present a transformer-based general framework, which
builds upon pre-trained language models and considers non-textual data, for
social post geolocation at the POI level. To this end, inputs are categorized
to handle different social data, and an optimal combination strategy is
provided for feature representations. Moreover, a uniform representation of
hierarchy is proposed to learn temporal information, and a concatenated version
of encodings is employed to capture feature-wise positions better. Experimental
results on various social datasets demonstrate that three variants of our
proposed framework outperform multiple state-of-art baselines by a large margin
in terms of accuracy and distance error metrics.Comment: Full papers are 12 pages in length plus additional 4 pages for
references (turns to 18 pages in total after submitting to arxiv). One figure
and 5 tables are contained. This paper was submitted to ECIR 2023 for revie
- …