12 research outputs found

    Cell wall degradation is required for normal starch mobilisation in barley endosperm

    No full text
    Starch degradation in barley endosperm provides carbon for early seedling growth, but the control of this process is poorly understood. We investigated whether endosperm cell wall degradation is an important determinant of the rate of starch degradation. We identified iminosugar inhibitors of enzymes that degrade the cell wall component arabinoxylan. The iminosugar 1,4-dideoxy-1, 4-imino-l-arabinitol (LAB) inhibits arabinoxylan arabinofuranohydrolase (AXAH) but does not inhibit the main starch-degrading enzymes α- and β-amylase and limit dextrinase. AXAH activity in the endosperm appears soon after the onset of germination and resides in dimers putatively containing two isoforms, AXAH1 and AXAH2. Upon grain imbibition, mobilisation of arabinoxylan and starch spreads across the endosperm from the aleurone towards the crease. The front of arabinoxylan degradation precedes that of starch degradation. Incubation of grains with LAB decreases the rate of loss of both arabinoxylan and starch, and retards the spread of both degradation processes across the endosperm. We propose that starch degradation in the endosperm is dependent on cell wall degradation, which permeabilises the walls and thus permits rapid diffusion of amylolytic enzymes. AXAH may be of particular importance in this respect. These results provide new insights into the mobilization of endosperm reserves to support early seedling growth

    Spiro Iminosugars: Structural Diversity and Synthetic Strategies

    No full text
    International audienceFrom their discovery in the late 1960s, iminosugars have undergone an expansion from an area of science limited to a few researchers to a field that now attracts the interest of members of the whole synthetic organic chemistry community. Indeed, many tasks concern structural modifications of standard iminosugars in order to improve their biological and pharmacological properties. In this way, the introduction of an adjoining spirocycle afforded unprecedented polyhydroxy-azaspiranes, the structures and syntheses of which are presented in this chapter. Special attention is paid to the key steps involved in the generation of the pivotal quaternary spiro atom
    corecore