25 research outputs found

    Long-term fracture load of all-ceramic crowns : effects of veneering ceramic thickness, application techniques, and cooling protocol

    Get PDF
    To evaluate, in vitro, the effects of the cooling protocol, application technique, and veneering ceramic thickness on the fracture resistance of ceramic crowns with Y-TZP frameworks. 80 frameworks were made from zirconia by the CAD/CAM technique and divided into 8 groups (n = 10) according to the factors: ?application technique? (stratified-L and pressed -P), ?thickness? (1 mm and 2 mm), and ?cooling protocol? (slow-S and fast-F) of the feldspathic veneering ceramic. After, all crowns were cemented over G10 preparations with resin cement (Panavia F, Kuraray), mechanically cycled (2x106 cycles, 200 N, 3Hz), and subjected to the axial compression resistance test (0.5 mm/min, 10 kN). The data (N) underwent descriptive statistical analysis by 3-way ANOVA and Tukey?s test (5%). Fracture analysis was performed to determine the possible origin of failure. The factors ?cooling protocol? (P=0.0058) and ?application? technique (P=0.0001) influenced the fracture resistance of the crowns. For pressed veneer technique, the P2S (4608.9±464.5). A presented significantly higher results than that P2F(3621.1±523.0)BCD (Tukey?s test). For the stratified technique, this difference was not observed (P>0.05). The thickness of the veneering ceramic was not significant regardless of the cooling protocol and technique (P>0.05). The predominant failure mode was chipping of the ceramic veneer originating in the subsurface. The pressed technique, used with a slow-cooling protocol, leads to the best outcome for the veneering of all-ceramic crowns

    Distribuição das tensões geradas ao redor de implantes osseointegrados de diferentes conexões cone morse: análise fotoelástica e pelo método dos elementos finitos

    No full text
    O objetivo deste trabalho foi avaliar a localização e distribuição das tensões geradas ao redor de implantes com pilares protéticos de diferentes conexões cone Morse através da análise fotoelástica (AFE) e do método dos elementos finitos (MEF). Para o MEF, implante e pilares protéticos de diferentes conexões cone Morse (hexagonado e sólido) foram digitalizados pela técnica da microtomografia computadorizada e, com auxílio de softwares computacionais foi realizada a modelagem da malha tridimensional e o carregamento dos objetos. Foi realizada a caracterização das propriedades mecânicas da resina fotoelástica. Foram simulados blocos com propriedades mecânicas de osso cortical e trabecular e de resina fotoelástica. A AFE foi realizada a partir de blocos de resina fotoelástica onde foram incluídos os implantes aparafusados aos diferentes pilares protéticos. Estes blocos foram confeccionados a partir de um bloco prototipado do modelo utilizado no MEF. Os corpos-deprova foram imersos em um recipiente com óleo mineral e o conjunto foi observado no polariscópio circular com dispositivo de aplicação de cargas acoplado e recebendo a mesma carga, em sentido e posição iguais. Foi feita análise descritiva para as imagens obtidas em ambas as metodologias onde observou-se que: as imagens obtidas no MEF apresentaram distribuição de tensões bastante similar entre os dois modelos com diferentes pilares protéticos. Foram observadas diferenças entre a distribuição das tensões em blocos ósseo e de resina; As imagens obtidas na AFE se assemelharam às obtidas em MEF com bloco de resina. As imagens da AFE também foram analisadas quantitativamente, por comparação a valores atribuídos às franjas. A concordância interobservadores foi conferida pelo teste de Dahlberg. Concluiu-se que o Pilar Sólido transfere cargas mais homogeneamente para o osso adjacente ao implante...The goal of this study was to evaluate the location and distribution of stresses generated around implants with different Morse taper connections abutments by photoelastic (PA) and finite element analysis (FEA). For FEA, implant and abutments with different Morse taper connections (hexagonal and solid) were scanned by computerized microtomography technique. The tridimensional mesh was modeled and the objects were loaded with the help of computer software. Photoelastic resin was characterized by mechanical properties. Trabecular and cortical bone and photoelastic resin blocks were simulated with their respective mechanical properties. The PA was performed with photoelastic resin blocks where implants were included and the different abutments were bolted. These blocks were made from a prototyped block of model used in FEA. Specimens were immersed in a mineral oil container and it was observed in the circular polariscope with the application device attached, where loads were received on same charge, on equal direction and position. Images obtained in both methodologies were descriptively analyzed where it was that: FEA images showed very similar stress distribution between two models with different abutments. Differences were observed between stress distribution in bone and resin blocks; PA images resembled those obtained on resin block FEA. PA images were also quantitatively analyzed by comparing the values assigned to fringes. Inter-observer agreement was given by Dahlberg test. It was concluded that solid abutment distributes loads more evenly to bone adjacent to implant compared with hexagonal abutment, for both analysis methods employed. Among the methodologies employed, it was observed that the PA has generated very similar results to those obtained in FEA with resin block, but different to those obtained in FEA when the clinical condition of the bone block was simulatedCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Removable Partial Dentures: Use of Rapid Prototyping

    No full text
    The CAD/CAM technology associated with rapid prototyping (RP) is already widely used in the fabrication of all-ceramic fixed prostheses and in the biomedical area; however, the use of this technology for the manufacture of metal frames for removable dentures is new. This work reports the results of a literature review conducted on the use of CAD/CAM and RP in the manufacture of removable partial dentures

    Effect of the Layering Technique on Bond Strength and Cohesive Resistance of a Porcelain-Zirconia System

    No full text
    Purpose: To evaluate the influence of the number of porcelain layers on its cohesive strength and on bonding to zirconia.Materials and Methods: Y-TZP blocks were cut into 1 cm(3) specimens (n = 30). The feldspathic porcelain (V9) was applied to the zirconia in different numbers of layers up to 1 cm total thickness (n = 10): ZP1 one layer; ZP2 two layers; ZP3 three layers. Ten specimens with V9 were prepared following the same protocols of groups 1 (P1) and 3 (P3). All study specimens were sintered three times. The specimens were cut into 1 mm(2) microbars and tested under tension in a universal testing machine (0.5 mm/min). We calculated strength (sigma, in MPa) by dividing the fracture load (N) by the fractured area (mm(2)). The failure mode was classified as cohesive (used to calculate the cohesive strength, sigma(c)) or adhesive (bond strength, sigma(a)). The data were analyzed by Kruskal-Wallis and Dunn's tests (alpha = 0.05) or ANOVA and Tukey's test (alpha = 0.05), according to their distribution parameters.Results: The ZP1 group presented the highest values for cya data, compared with other groups, which were statistically similar. The predominant failure mode for the bonded specimens was cohesive. With regard to the cohesive strength (sigma(c)), ZP1 presented the highest values.Conclusion: It can be concluded that the presence of more than one porcelain layer decreases its cohesive strength and its bonding strength to zirconia.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Tooth Discoloration Induced by Endodontic Phenothiazine Dyes in Photodynamic Therapy

    No full text
    Objective: This study sought to assess if discoloration of tooth structures occurs after photodynamic therapy (PDT) and to determine the efficacy of a protocol to remove the photosensitizers. Background data: PDT has been used in root canal treatment to enhance cleaning and disinfection of the root canal system. PDT uses a low power laser in association with a dye as a photosensitizer. Photosensitizers can induce staining of the dental structures, resulting in an unaesthetic appearance. Methods: Forty teeth were randomly divided into four groups according to the photosensitizer used and pre-irradiation time: 0.01% methylene blue for 5 min (MB5); 0.01% methylene blue for 10 min (MB 10); 0.01% toluidine blue for 5 min (TB5); and 0.01% toluidine blue for 10 min (TB 10). Specimens were irradiated with a 660 nm diode laser with a 300 mu m diameter optical fiber, at 40 mW power setting for 3 min. Immediately after, the photosensitizers were removed with Endo-PTC cream +2.5% sodium hypochlorite (NaOCl). The shade was measured by a Vita Easyshade spectrophotometer based on the CIELAB color system (L*a*b* values) at three different experimental times: before PDT (T0), immediately after PDT (T1), and after removal of the photosensitizer (T2). Results: The results showed a decrease in the averages of the L*a*b* coordinate values after PDT (T1) in all the groups, when compared with the number at T0, with a significant statistical difference in group MB10. After photosensitizer removal (T2), all the values of the coordinates increased with significant statistical differences (p < 0.05) between T1 and T2 in L* and a*. Conclusions: It can be concluded that both methylene blue and toluidine blue dyes cause tooth discoloration, and that Endo-PTC cream associated with 2.5% NaOCl effectively remove these dyes, regardless of the pre-irradiation time used for PDT

    Stress distribution around osseointegrated implants with different internal-cone connections: photoelastic and finite element analysis

    No full text
    The goal of this study was to evaluate the distribution of stresses generated around implants with different internal-cone abutments by photoelastic (PA) and finite element analysis (FEA). For FEA, implant and abutments with different internal-cone connections (H- hexagonal and S- solid) were scanned, 3D meshes were modeled and objects were loaded with computer software. Trabecular and cortical bones and photoelastic resin blocks were simulated. The PA was performed with photoelastic resin blocks where implants were included and different abutments were bolted. Specimens were observed in the circular polariscope with the application device attached, where loads were applied on same conditions as FEA. FEA images showed very similar stress distribution between two models with different abutments. Differences were observed between stress distribution in bone and resin blocks; PA images resembled those obtained on resin block FEA. PA images were also quantitatively analyzed by comparing the values assigned to fringes. It was observed that S abutment distributes loads more evenly to bone adjacent to an implant when compared to H abutment, for both analysis methods used. It was observed that the PA has generated very similar results to those obtained in FEA with the resin block.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore