47 research outputs found

    Cripto promotes A–P axis specification independently of its stimulatory effect on Nodal autoinduction

    Get PDF
    The EGF-CFC gene cripto governs anterior–posterior (A–P) axis specification in the vertebrate embryo. Existing models suggest that Cripto facilitates binding of Nodal to an ActRII–activin-like kinase (ALK) 4 receptor complex. Cripto also has a crucial function in cellular transformation that is independent of Nodal and ALK4. However, how ALK4-independent Cripto pathways function in vivo has remained unclear. We have generated cripto mutants carrying the amino acid substitution F78A, which blocks the Nodal–ALK4–Smad2 signaling both in embryonic stem cells and cell-based assays. In criptoF78A/F78A mouse embryos, Nodal fails to expand its own expression domain and that of cripto, indicating that F78 is essential in vivo to stimulate Smad-dependent Nodal autoinduction. In sharp contrast to cripto-null mutants, criptoF78A/F78A embryos establish an A–P axis and initiate gastrulation movements. Our findings provide in vivo evidence that Cripto is required in the Nodal–Smad2 pathway to activate an autoinductive feedback loop, whereas it can promote A–P axis formation and initiate gastrulation movements independently of its stimulatory effect on the canonical Nodal–ALK4–Smad2 signaling pathway

    A failure mode and effect analysis (FMEA)-based approach for risk assessment of scientific processes in non-regulated research laboratories

    Get PDF
    AbstractNowadays, Quality Management tools such as failure mode and effect analysis (FMEA) are widely used throughout the aeronautical, automotive, software, food services, health care and many other industries to sustain and improve quality and safety. The increasing complexity of scientific research makes it more difficult to maintain all activities under control, in order to guarantee validity and reproducibility of results. Even in non-regulated research, scientists need to be supported with management tools that maximize study performance and outcomes, while facilitating the research process. Frequently, steps that involve human intervention are the weak links in the process. Risk analysis therefore gives considerable benefit to analytical validation, assessing and avoiding failures due to human error, potential imprecision in applying protocols, uncertainty in equipment function and imperfect control of materials. This paper describes in detail how FMEA methodology can be applied as a performance improvement tool in the field of non-regulated research, specifically on a basic Life Sciences research process. We chose as "pilot process" the selection of oligonucleotide aptamers for therapeutic purposes, as an example of a complex and multi-step process, suitable for technology transfer. We applied FMEA methodology, seeking every opportunity for error and its impact on process output, and then, a set of improvement actions was generated covering most aspects of laboratory practice, such as equipment management and staff training. We also propose a useful tool supporting the risk assessment of research processes and its outputs and that we named "FMEA strip worksheet." These tools can help scientists working in non-regulated research to approach Quality Management and to perform risk evaluation of key scientific procedures and processes with the final aim to increase and better control efficiency and efficacy of their research

    Characterization of the functional properties of the neuroectoderm in mouse Cripto -/-

    Full text link
    During development of the mammalian embryo, there is a complex relation between formation of the mesoderm and the neuroectoderm. In mouse, for example, the role of the node and its mesendoderm derivatives in anterior neural specification is still debated. Mouse Cripto(-/-) embryos could potentially help settle this debate because they lack almost all embryonic endoderm and mesoderm, including the node and its derivatives. In the present paper, we show that Cripto(-/-) embryos can still form functional neural stem cells that are able to differentiate and maintain a neural phenotype both in vivo and in vitro. These data suggest that signals emanating from the mesoderm and endoderm might not be essential for the formation and differentiation of neural stem cells. However, we use grafting experiments to show that the Cripto(-/-) isthmus (the secondary organizer located at the midbrain-hindbrain boundary) loses its inductive ability. We further show that the Cripto(-/-)isthmus expresses lower amounts of the isthmic signalling molecule, Fgf8. Since nearby tissues remain competent to respond to exogenously added Fgf8, this reduction in Fgf8 levels in the Cripto(-/-) isthmus is the potential cause of the loss of patterning ability in graft experiments. Overall, we interpret our data to suggest that the mammalian node and primitive streak are essential for the development of the regional identities that control the specification and formation of the secondary organizers within the developing brain.2.161 JCR (2009) Q4, 27/36 Developmental biolog

    Vaccination with (1-11)E2 in alum efficiently induces an antibody response to β-amyloid without affecting brain β-amyloid load and microglia activation in 3xTg mice.

    Get PDF
    peer reviewedImmunization against β-amyloid (Aβ) is pursued as a possible strategy for the prevention of Alzheimer's disease (AD). In clinical trials, Aβ 1-42 proved poorly immunogenic and caused severe adverse effects; therefore, safer and more immunogenic candidate vaccines are needed. Multimeric protein (1-11)E2 is able to induce an antibody response to Aβ, immunological memory, and IL-4 production, with no concomitant anti-Aβ T cell response. Antisera recognize Aβ oligomers, protofibrils, and fibrils. In this study, we evaluated the effect of prophylactic immunization with three doses of (1-11)E2 in alum in the 3xTg mouse model of AD. Immunization with (1-11)E2 efficiently induced anti-Aβ antibodies, but afforded no protection against Aβ accumulation and neuroinflammation. The identification of the features of the anti-Aβ immune response that correlate with the ability to prevent Aβ accumulation remains an open problem that deserves further investigation

    Cripto-independent Nodal signaling promotes positioning of the A-P axis in the early mouse embryo

    Get PDF
    During early mouse development, the TGF beta-related protein Nodal specifies the organizing centers that control the formation of the anterior-posterior (A-P) axis. EGF-CFC proteins are important components of the Nodal signaling pathway, most likely by acting as Nodal coreceptors. However, the extent to which Nodal activity depends on EGF-CFC proteins is still debated. Cripto is the earliest EGF-CFC gene expressed during mouse embryogenesis and is involved in both A-P axis orientation and mesoderm formation. To investigate the relation between Cripto and Nodal in the early mouse embryo, we removed the Nodal antagonist Cerberus 1 (Cer1) and simultaneously Cripto, by generating Cer1;Cripto double mouse mutants. We observed that two thirds of the Cer1,Cripto double mutants are rescued in processes that are severely compromised in Cripto(-/-) embryos, namely A-P axis orientation, anterior mesendoderm and posterior neuroectoderin formation. The observed rescue is strongly reduced in Cer1;Cripto;Nodal triple mutants, suggesting that Nodal can signal extensively in the absence of Cripto, if Cer1 is also inhibited. This signaling activity drives A-P axis positioning. Our results provide evidence for the existence. of Cripto-independent signaling mechanisms, by which Nodal controls axis specification in the early mouse embryo. (C) 2007 Elsevier Inc. All rights reserved

    Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis

    Get PDF
    Ultraconserved regions (UCRs) have been shown to originate non-coding RNA transcripts (T-UCRs) that have different expression profiles and play functional roles in the pathophysiology of multiple cancers. The relevance of these functions to the pathogenesis of bladder cancer (BlCa) is speculative. To elucidate this relevance, we first used genome-wide profiling to evaluate the expression of T-UCRs in BlCa tissues. Analysis of two datasets comprising normal bladder tissues and BlCa specimens with a custom T-UCR microarray identified ultraconserved RNA (uc.) 8+ as the most upregulated T-UCR in BlCa tissues, although its expression was lower than in pericancerous bladder tissues. These results were confirmed on BlCa tissues by real-time PCR and by in situ hybridization. Although uc.8+ is located within intron 1 of CASZ1, a zinc-finger transcription factor, the transcribed non-coding RNA encoding uc.8+ is expressed independently of CASZ1. In vitro experiments evaluating the effects of uc.8+ silencing, showed significantly decreased capacities for cancer cell invasion, migration, and proliferation. From this, we proposed and validated a model of interaction in which uc.8+ shuttles from the nucleus to the cytoplasm of BlCa cells, interacts with microRNA (miR)-596, and cooperates in the promotion and development of BlCa. Using computational analysis, we investigated the miR-binding domain accessibility, as determined by base-pairing interactions within the uc.8+ predicted secondary structure, RNA binding affinity, and RNA species abundance in bladder tissues and showed that uc.8+ is a natural decoy for miR-596. Thus uc.8+ upregulation results in increased expression of MMP9, increasing the invasive potential of BlCa cells. These interactions between evolutionarily conserved regions of DNA suggest that natural selection has preserved this potentially regulatory layer that uses RNA to modulate miR levels, opening up the possibility for development of useful markers for early diagnosis and prognosis as well as for development of new RNA-based cancer therapies

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Challenges and Promise for Glioblastoma Treatment through Extracellular Vesicle Inquiry

    No full text
    Glioblastoma (GB) is a rare but extremely aggressive brain tumor that significantly impacts patient outcomes, affecting both duration and quality of life. The protocol established by Stupp and colleagues in 2005, based on radiotherapy and chemotherapy with Temozolomide, following maximum safe surgical resection remains the gold standard for GB treatment; however, it is evident nowadays that the extreme intratumoral and intertumoral heterogeneity, as well as the invasiveness and tendency to recur, of GB are not compatible with a routine and unfortunately ineffective treatment. This review article summarizes the main challenges in the search for new valuable therapies for GB and focuses on the impact that extracellular vesicle (EV) research and exploitation may have in the field. EVs are natural particles delimited by a lipidic bilayer and filled with functional cellular content that are released and uptaken by cells as key means of cell communication. Furthermore, EVs are stable in body fluids and well tolerated by the immune system, and are able to cross physiological, interspecies, and interkingdom barriers and to target specific cells, releasing inherent or externally loaded functionally active molecules. Therefore, EVs have the potential to be ideal allies in the fight against GB and to improve the prognosis for GB patients. The present work describes the main preclinical results obtained so far on the use of EVs for GB treatment, focusing on both the EV sources and molecular cargo used in the various functional studies, primarily in vivo. Finally, a SWOT analysis is performed, highlighting the main advantages and pitfalls of developing EV-based GB therapeutic strategies. The analysis also suggests the main directions to explore to realize the possibility of exploiting EVs for the treatment of GB

    Pathological and Therapeutic Significance of Tumor-Derived Extracellular Vesicles in Cancer Cell Migration and Metastasis

    No full text
    The infiltration of primary tumors and metastasis formation at distant sites strongly impact the prognosis and the quality of life of cancer patients. Current therapies including surgery, radiotherapy, and chemotherapy are limited in targeting the complex cell migration mechanisms responsible for cancer cell invasiveness and metastasis. A better understanding of these mechanisms and the development of new therapies are urgently needed. Extracellular vesicles (EVs) are lipid-enveloped particles involved in inter-tissue and inter-cell communication. This review article focuses on the impact of EVs released by tumor cells, specifically on cancer cell migration and metastasis. We first introduce cell migration processes and EV subtypes, and we give an overview of how tumor-derived EVs (TDEVs) may impact cancer cell migration. Then, we discuss ongoing EV-based cancer therapeutic approaches, including the inhibition of general EV-related mechanisms as well as the use of EVs for anti-cancer drug delivery, focusing on the harnessing of TDEVs. We propose a protein-EV shuttle as a route alternative to secretion or cell membrane binding, influencing downstream signaling and the final effect on target cells, with strong implications in tumorigenesis. Finally, we highlight the pitfalls and limitations of therapeutic EV exploitation that must be overcome to realize the promise of EVs for cancer therapy
    corecore