994 research outputs found
Stellar and Molecular Radii of a Mira Star: First Observations with the Keck Interferometer Grism
Using a new grism at the Keck Interferometer, we obtained spectrally
dispersed (R ~ 230) interferometric measurements of the Mira star R Vir. These
data show that the measured radius of the emission varies substantially from
2.0-2.4 microns. Simple models can reproduce these wavelength-dependent
variations using extended molecular layers, which absorb stellar radiation and
re-emit it at longer wavelengths. Because we observe spectral regions with and
without substantial molecular opacity, we determine the stellar photospheric
radius, uncontaminated by molecular emission. We infer that most of the
molecular opacity arises at approximately twice the radius of the stellar
photosphere.Comment: 12 pages, including 3 figures. Accepted by ApJ
Evolution of correlated complexity in the radically different courtship signals of birds-of-paradise
This is the author accepted manuscript. The final version is available from Public Library of Science (PLoS) via the DOI in this record.Data accessibility:
Data for primary analyses are included in S1 Data file.Ornaments used in courtship often vary wildly among species, reflecting the evolutionary interplay between mate preference functions and the constraints imposed by natural selection. Consequently, understanding the evolutionary dynamics responsible for ornament diversification has been a longstanding challenge in evolutionary biology. However, comparing radically different ornaments across species, as well as different classes of ornaments within species, is a profound challenge to understanding diversification of sexual signals. Using novel methods and a unique natural history dataset, we explore evolutionary patterns of ornament evolution in a group – the birds-of-paradise – exhibiting dramatic phenotypic diversification widely assumed to be driven by sexual selection. Rather than the trade-off between ornament types originally envisioned by Darwin and Wallace, we found positive correlations among cross-modal (visual/acoustic) signals indicating functional integration of ornamental traits into a composite unit – the courtship phenotype. Furthermore, given the broad theoretical and empirical support for the idea that systemic robustness – functional overlap and interdependency – promotes evolutionary innovation, we posit that birds-of-paradise have radiated extensively through ornamental phenotype space as a consequence of the robustness in the courtship phenotype that we document at a phylogenetic scale. We suggest that the degree of robustness in courtship phenotypes among taxa can provide new insights into the relative influence of sexual and natural selection on phenotypic radiations
Milliarcsecond N-Band Observations of the Nova RS Ophiuchi: First Science with the Keck Interferometer Nuller
We report observations of the nova RS Ophiuchi (RS Oph) using the Keck
Interferometer Nuller (KIN), approximately 3.8 days following the most recent
outburst that occurred on 2006 February 12. These observations represent the
first scientific results from the KIN, which operates in N-band from 8 to 12.5
microns in a nulling mode. By fitting the unique KIN data, we have obtained an
angular size of the mid-infrared continuum of 6.2, 4.0, or 5.4 mas for a disk
profile, gaussian profile (FWHM), and shell profile respectively. The data show
evidence of enhanced neutral atomic hydrogen emission and atomic metals
including silicon located in the inner spatial regime near the white dwarf (WD)
relative to the outer regime. There are also nebular emission lines and
evidence of hot silicate dust in the outer spatial region, centered at ! 17 AU
from the WD, that are not found in the inner regime. Our evidence suggests that
these features have been excited by the nova flash in the outer spatial regime
before the blast wave reached these regions. These identifications support a
model in which the dust appears to be present between outbursts and is not
created during the outburst event. We further discuss the present results in
terms of a unifying model of the system that includes an increase in density in
the plane of the orbit of the two stars created by a spiral shock wave caused
by the motion of the stars through the cool wind of the red giant star. These
data show the power and potential of the nulling technique which has been
developed for the detection of Earth-like planets around nearby stars for the
Terrestrial Planet Finder Mission and Darwin missions.Comment: 41 pages, 10 figure
Keck Interferometer Nuller Data Reduction and On-Sky Performance
We describe the Keck Interferometer nuller theory of operation, data reduction, and on-sky performance, particularly as it applies to the nuller exozodiacal dust key science program that was carried out between 2008 February and 2009 January. We review the nuller implementation, including the detailed phasor processing involved in implementing the null-peak mode used for science data and the sequencing used for science observing. We then describe the Level 1 reduction to convert the instrument telemetry streams to raw null leakages, and the Level 2 reduction to provide calibrated null leakages. The Level 1 reduction uses conservative, primarily linear processing, implemented consistently for science and calibrator stars. The Level 2 processing is more flexible, and uses diameters for the calibrator stars measured contemporaneously with the interferometer’s K-band cophasing system in order to provide the requisite accuracy. Using the key science data set of 462 total scans, we assess the instrument performance for sensitivity and systematic error. At 2.0 Jy we achieve a photometrically-limited null leakage uncertainty of 0.25% rms per 10 minutes of integration time in our broadband channel. From analysis of the Level 2 reductions, we estimate a systematic noise floor for bright stars of ~0.2% rms null leakage uncertainty per observing cluster in the broadband channel. A similar analysis is performed for the narrowband channels. We also provide additional information needed for science reduction, including details on the instrument beam pattern and the basic astrophysical response of the system, and references to the data reduction and modeling tools
The dusty AGB star RS CrB: first mid-infrared interferometric observations with the Keck Telescopes
We report interferometric observations of the semi-regular variable star RS
CrB, a red giant with strong silicate emission features. The data were among
the first long baseline mid-infrared stellar fringes obtained between the Keck
telescopes, using parts of the new nulling beam combiner. The light was
dispersed by a low-resolution spectrometer, allowing simultaneous measurement
of the source visibility and intensity spectra from 8 to 12 microns. The
interferometric observations allow a non-ambiguous determination of the dust
shell spatial scale and relative flux contribution. Using a simple
spherically-symmetric model, in which a geometrically thin shell surrounds the
stellar photosphere, we find that ~30% to ~70% of the overall mid-infrared flux
- depending on the wavelength - originates from 7-8 stellar radii. The derived
shell opacity profile shows a broad peak around 11 microns (tau ~ 0.06),
characteristic of Mg-rich silicate dust particles.Comment: Accepted for publication in ApJ Letter
The near-infrared size-luminosity relations for Herbig Ae/Be disks
We report the results of a sensitive K-band survey of Herbig Ae/Be disk sizes
using the 85-m baseline Keck Interferometer. Targets were chosen to span the
maximum range of stellar properties to probe the disk size dependence on
luminosity and effective temperature. For most targets, the measured
near-infrared sizes (ranging from 0.2 to 4 AU) support a simple disk model
possessing a central optically-thin (dust-free) cavity, ringed by hot dust
emitting at the expected sublimation temperatures (T_sub~1000-1500K).
Furthermore, we find a tight correlation of disk size with source luminosity R
propto L^(1/2) for Ae and late Be systems (valid over more than 2 decades in
luminosity), confirming earlier suggestions based on lower-quality data.
Interestingly, the inferred dust-free inner cavities of the highest luminosity
sources (Herbig B0-B3 stars) are under-sized compared to predictions of the
optically-thin cavity model, likely due to optically-thick gas within the inner
AU.Comment: Accepted by Astrophysical Journal; 24 pages, 4 figures, 4 table
Complex cytogenetic rearrangements at the DURS1 locus in syndromic Duane retraction syndrome
Key Clinical Message A patient with syndromic Duane retraction syndrome harbors a chromosome 811.1q13.2 inversion and 8p11.1-q12.3 marker chromosome containing subregions with differing mosaicism and allele frequencies. This case highlights the potential requirement for multiple genetic methods to gain insight into genotype–phenotype correlation, and ultimately into molecular mechanisms that underlie human disease
Unrelated Helpers in a Primitively Eusocial Wasp: Is Helping Tailored Towards Direct Fitness?
The paper wasp Polistes dominulus is unique among the social insects in that nearly one-third of co-foundresses are completely unrelated to the dominant individual whose offspring they help to rear and yet reproductive skew is high. These unrelated subordinates stand to gain direct fitness through nest inheritance, raising the question of whether their behaviour is adaptively tailored towards maximizing inheritance prospects. Unusually, in this species, a wealth of theory and empirical data allows us to predict how unrelated subordinates should behave. Based on these predictions, here we compare helping in subordinates that are unrelated or related to the dominant wasp across an extensive range of field-based behavioural contexts. We find no differences in foraging effort, defense behaviour, aggression or inheritance rank between unrelated helpers and their related counterparts. Our study provides no evidence, across a number of behavioural scenarios, that the behaviour of unrelated subordinates is adaptively modified to promote direct fitness interests
Recommended from our members
Rates of asymptomatic respiratory virus infection across age groups.
Respiratory viral infections are a leading cause of disease worldwide. A variety of respiratory viruses produce infections in humans with effects ranging from asymptomatic to life-treathening. Standard surveillance systems typically only target severe infections (ED outpatients, hospitalisations, deaths) and fail to track asymptomatic or mild infections. Here we performed a large-scale community study across multiple age groups to assess the pathogenicity of 18 respiratory viruses. We enrolled 214 individuals at multiple New York City locations and tested weekly for respiratory viral pathogens, irrespective of symptom status, from fall 2016 to spring 2018. We combined these test results with participant-provided daily records of cold and flu symptoms and used this information to characterise symptom severity by virus and age category. Asymptomatic infection rates exceeded 70% for most viruses, excepting influenza and human metapneumovirus, which produced significantly more severe outcomes. Symptoms were negatively associated with infection frequency, with children displaying the lowest score among age groups. Upper respiratory manifestations were most common for all viruses, whereas systemic effects were less typical. These findings indicate a high burden of asymptomatic respiratory virus infection exists in the general population
- …