544 research outputs found
Cloning and characterisation of genes encoding molecular recognition proteins from insects
Olfaction is one of the most important senses by which insects obtain information about their environment. In the early stages of olfactory perception in insects, odour molecules are carried across the sensillum lymph by small soluble Odorant Binding Proteins (OBPs). This is followed by activation of the appropriate olfactory receptor, resulting in an electrical impulse, and subsequent degradation of the initial signal.
OBPs have been studied in a range of insect orders including Lepidoptera, Diptera and Orthoptera, and this study reports the cloning and characterisation of cDNAs with a potential olfactory role in the vetch aphid, Megoura viciae (Buckton, Homoptera: Aphididiae).
Construction and sequencing of antennal cDNA libraries identified two cDNAs, MvicOBP1 and Mv164, which were approximately 0.8kb and 1kb respectively. The amino acid sequence of MvicOBP1 has the spacing pattern of six cysteine residues that is characteristic of insect OBPs, and Mv164 shows similarity to insect cytochrome P450 enzymes. RT-PCR showed that these cDNAs have specific or enhanced expression in the chemosensory tissues of M. viciae, and parallel expression patterns suggest a "linked" function. Related sequences are present and expressed in other aphid species, and sequencing of genomic fragments allowed the partial elucidation of the intron/exon organisation of these genes.
Subtracted antennal cDNA libraries identified two cDNAs encoding proteins with significant similarity to insect chemosensory proteins (CSPs), cDNAs encoding Juvenile Hormone Binding Proteins (JHBPs), and a tissue-specific cDNA with a potential carrier role. These, coupled with the OBPs, add evidence to the suggestion that there is an insect superfamily of binding proteins.
A PBP from Bombyx mori (BmorPBP1) was used as a model system for in vitro expression of an insect OBP and subsequent characterisation of the recombinant protein. Four forms of this protein, identified through their interaction with an anti-BmorPBP antibody, were resolved by isoelectric focusing
Recommended from our members
Can volcanism build hydrogen-rich early atmospheres?
Hydrogen in rocky planet atmospheres has been invoked in arguments for
extending the habitable zone via N2-H2 and CO2-H2 greenhouse warming, and
providing atmospheric conditions suitable for efficient production of prebiotic
molecules. On Earth and Super-Earth-sized bodies, where H2-rich primordial
envelopes are quickly lost to space, volcanic outgassing can act as a hydrogen
source, provided it balances with the loss rate from the top of the atmosphere.
Here, we show that both Earth-like and Mars-like planets can sustain
atmospheric H2 fractions of several percent across relevant magmatic fO2
ranges. In general this requires hydrogen escape to operate somewhat less
efficiently than the diffusion limit. We use a thermodynamical model of magma
degassing to determine which combinations of magma oxidation, volcanic flux,
and hydrogen escape efficiency can build up appreciable levels of hydrogen in a
planet's secondary atmosphere. On a planet similar to the Archean Earth and
with a similar magmatic fO2, we suggest that the mixing ratio of atmospheric
hydrogen could have been in the range 0.2-3%. A planet erupting magmas around
the Iron-Wustite (IW) buffer (i.e., ~3 log fO2 units lower than Archean
Earth's), but with otherwise similar volcanic fluxes and H2 loss rates to early
Earth, could sustain an atmosphere with approximately 10-20% H2. For an early
Mars-like planet with magmas around IW, but a lower range of surface pressures
and volcanic fluxes compared to Earth, an atmospheric H2 mixing ratio of 2-8%
is possible. On early Mars, this H2 mixing ratio could be sufficient to
deglaciate the planet. However, the sensitivity of these results to primary
magmatic water contents and volcanic fluxes show the need for improved
constraints on the crustal recycling efficiency and mantle water contents of
early Mars
Sertoli–Leydig cell tumor of the ovary: A diagnostic dilemma
AbstractBackgroundSertoli–Leydig cell tumors are rare sex-cord stromal tumors of the ovary that can present with a variety of histological elements, which may complicate diagnosis and treatment.CaseA 40-year-old female presenting with pelvic pain is found to have a large complex right adnexal mass and elevated alpha-fetoprotein. The mass was diagnosed as a Sertoli–Leydig cell tumor with heterologous elements including carcinoid and hepatoid components. She was treated with surgical resection followed by adjuvant chemotherapy and remains clear of disease.ConclusionPrognostic indicators for Sertoli–Leydig cell tumors include degree and type of heterologous element differentiation. Thorough characterization of such elements is crucial for adequate diagnosis and treatment
Distribution of Palinuridae and Scyllaridae phyllosoma larvae within the East Australian Current: a climate change hot spot
Many marine species are predicted to shift their ranges poleward due to rising ocean temperatures driven by climate change. For benthic marine species with pelagic larval stages, poleward range shifts are often facilitated through pelagic larval transport via western boundary currents (WBC). By surveying pelagic larval distributions within WBCs, species advected poleward of their known distributions can be identified and monitored. Palinurid and scyllarid lobster larvae (phyllosoma) have long pelagic larval durations, providing high potential for poleward advection. We surveyed spatial distribution of phyllosoma within the western-boundary East Australian Current. Due to difficulties morphologically identifying phyllosoma, we tested the utility of molecular identification using cytochrome c oxidase I (COI). From COI sequences of 56 phyllosoma and one postlarva, 65% of sequences consisted of good-quality mitochondrial DNA. Across water types sampled, scyllarid phyllosoma exhibited relatively homogeneous distribution, whereas palinurid phyllosoma exhibited heterogeneous distribution with greatest abundance inside a warm core eddy on the south coast of eastern Australia. Two tropical and one subtropical palinurid species were detected ~75–1800 km to the south or south-west of their known species distribution. Our results indicate tropical lobster species are reaching temperate regions, providing these species the opportunity to establish in temperate regions if or when environmental conditions become amenable to settlement
Truthmakers and modality
This paper attempts to locate, within an actualist ontology, truthmakers for modal truths: truths of the form or . In section 1 I motivate the demand for substantial truthmakers for modal truths. In section 2 I criticise Armstrong’s account of truthmakers for modal truths. In section 3 I examine essentialism and defend an account of what makes essentialist attributions true, but I argue that this does not solve the problem of modal truth in general. In section 4 I discuss, and dismiss, a theistic account of the source of modal truth proposed by Alexander Pruss. In section 5 I offer a means of (dis)solving the problem
What have we learnt from EUPORIAS climate service prototypes?
The international effort toward climate services, epitomised by the development of the Global Framework for Climate Services and, more recently the launch of Copernicus Climate Change Service has renewed interest in the users and the role they can play in shaping the services they will eventually use. Here we critically analyse the results of the five climate service prototypes that were developed as part of the EU funded project EUPORIAS.
Starting from the experience acquired in each of the projects we attempt to distil a few key lessons which, we believe, will be relevant to the wider community of climate service developers
A novel diffuse large B-cell lymphoma-associated cancer testis antigen encoding a PAS domain protein
Here we report that the OX-TES-1 SEREX antigen, which showed immunological reactivity with serum from four out of 10 diffuse large B-cell lymphoma (DLBCL) patients, is encoded by a novel gene, PAS domain containing 1 (PASD1). PASD1_v1 cDNA encodes a 639 amino-acid (aa) protein product, while an alternatively spliced variant (PASD1_v2), lacking intron 14, encodes a 773 aa protein, the first 638 aa of which are common to both proteins. The PASD1-predicted protein contains a PAS domain that, together with a putative leucine zipper and nuclear localisation signal, suggests it encodes a transcription factor. The expression of PASD1_v1 mRNA was confirmed by RT-PCR in seven DLBCL-derived cell lines, while PASD1_v2 mRNA appears to be preferentially expressed in cell lines derived from non-germinal centre DLBCL. Immunophenotyping studies of de novo DLBCL patients' tumours with antibodies to CD10, BCL-6 and MUM1 indicated that two patients mounting an immune response to PASD1 were of a poor prognosis non-germinal centre subtype. Expression of PASD1 mRNA was restricted to normal testis, while frequent expression was observed in solid tumours (25 out of 68), thus fulfilling the criteria for a novel cancer testis antigen. PASD1 has potential for lymphoma vaccine development that may also be widely applicable to other tumour types
Identification and Characterization of Peripheral T-Cell Lymphoma-Associated SEREX Antigens
Peripheral T-cell lymphomas (PTCL) are generally less common and pursue a more aggressive clinical course than B-cell lymphomas, with the T-cell phenotype itself being a poor prognostic factor in adult non-Hodgkin lymphoma (NHL). With notable exceptions such as ALK+ anaplastic large cell lymphoma (ALCL, ALK+), the molecular abnormalities in PTCL remain poorly characterised. We had previously identified circulating antibodies to ALK in patients with ALCL, ALK+. Thus, as a strategy to identify potential antigens associated with the pathogenesis of PTCL, not otherwise specified (PTCL, NOS), we screened a testis cDNA library with sera from four PTCL, NOS patients using the SEREX (serological analysis of recombinant cDNA expression libraries) technique. We identified nine PTCL, NOS-associated antigens whose immunological reactivity was further investigated using sera from 52 B- and T-cell lymphoma patients and 17 normal controls. The centrosomal protein CEP250 was specifically recognised by patients sera and showed increased protein expression in cell lines derived from T-cell versus B-cell malignancies. TCEB3, BECN1, and two previously uncharacterised proteins, c14orf93 and ZBTB44, were preferentially recognised by patients' sera. Transcripts for all nine genes were identified in 39 cancer cell lines and the five genes encoding preferentially lymphoma-recognised antigens were widely expressed in normal tissues and mononuclear cell subsets. In summary, this study identifies novel molecules that are immunologically recognised in vivo by patients with PTCL, NOS. Future studies are needed to determine whether these tumor antigens play a role in the pathogenesis of PTCL
Redox-Dependent Stability, Protonation, and Reactivity of Cysteine-Bound Heme Proteins
Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the protonation state of the coordinated Cys differs for the ferric and ferrous heme species, with Cys binding as a thiolate and a thiol, respectively. Analysis of redox-dependent stability and alkaline transitions of these model proteins, as well as comparisons to Cys binding studies with the minimalist heme peptide microperoxidase-8, demonstrate that the protein scaffold and solvent interactions play important roles in stabilizing a particular Cys–heme coordination. The increased stability of ferric thiolate compared with ferrous thiol arises mainly from entropic factors. This robust cyt c model system provides access to all four forms of Cys-bound heme, including the ferric thiol. Protein motions control the rates of heme redox reactions, and these effects are amplified at low pH, where the proteins are less stable. Thermodynamic signatures and redox reactivity of the model Cys-bound hemes highlight the critical role of the protein scaffold and its dynamics in modulating redox-linked transitions between thiols and thiolates
- …