4 research outputs found
Molecular investigation of feline coronavirus (FCoV) in local pet cats
Feline coronavirus (FCoV) infection is a very common in cat population. FCoV is further classified into two biotypes namely feline enteric coronavirus (FECV) and mutated feline infectious peritonitis virus (FIPV), in which FIPV causes a fatal immune complex disease by changing the tropism from enterocytes to monocytes. Previous studies on molecular detection of FCoV in cats were carried out in catteries but limited study investigate the presence of FCoV antigen in local pet cats. By considering this fact, this study aims to detect FCoV antigen via RT-PCR assay in local pet cats and to compare the similarity of the identified FCoV strain with previous related virus by phylogenetic analysis. By using convenience sampling, rectal swabs and buffy coat were collected from 16 clinically ill pet cats and 5 healthy pet cats. Viral RNA was extracted and subjected to one-step RT-PCR, targeting polymerase gene. Only one out of 21 fecal samples was positive for FCoV and none from buffy coat samples. Phylogenetic analysis revealed that the identified positive sample was highly homologous, up to 95%, to FCoV strain from Netherlands and South Korea on partial sequence of polymerase gene. In conclusion, this study detected FCoV antigen in local pet cats from fecal samples while negative detection from fecal and buffy coat samples could not completely rule out the possibilities of FCoV infection due to the complexity of the virus diagnosis that require multiple series of analysis
Molecular investigation of feline coronavirus (FCoV) in local pet cats
Feline coronavirus (FCoV) infection is very common in cat population. FCoV is further classified into two biotypes namely feline enteric coronavirus (FECV) and mutated feline infectious peritonitis virus (FIPV), in which FIPV causes a fatal immune complex disease by changing the tropism from enterocytes to monocytes. Previous studieson molecular detection of FCoVin cats were carried out in catteries but there is limited study on investigation of the presence of FCoV antigen in local pet cats. By considering this fact, this study aims to detect FCoV antigen via RT-PCR assay in local pet cats and to compare the similarity of the identified FCoV strain with previous related virus by phylogenetic analysis. By using convenience sampling, rectal swabs and buffy coat were collected from 16 clinically ill pet cats and 5 healthy pet cats. Viral RNA was extracted and subjected to one-step RT-PCR, targeting polymerase gene. Only 1 out of 21fecal samples was positive for FCoV and none for buffy coat. Phylogenetic analysis revealed that the identified positive sample was highly homologous, up to 95%, to aFCoV strain from Netherlands on partial sequence of polymerase gene. In conclusion, this study detected FCoV antigen in local pet cats and negative detection could not completely rule out the possibilities of FCoV infection due to the complexity of the virus diagnosis that require multiple series of analysis
Molecular detection of feline leukemia virus in clinically ill cats in Klang Valley, Malaysia
Background and Aim: Feline leukemia virus (FeLV) is classified as Retroviridae gammaretrovirus. FeLV occurs worldwide, including Malaysia. Thus far, only one decade-old study on molecular characterization of Malaysian FeLV isolates exists, which resulted in a scarcity of updated information of current FeLV isolates circulating in Malaysia. This study was conducted to determine the status of FeLV in clinically ill cats and to study the molecular characterization and phylogenetic relatedness of the current isolates.
Materials and Methods: Convenience sampling was performed in 20 cats from the Gasing Veterinary Hospital in Selangor. Plasma and saliva samples were collected from 15 clinically ill cats and 5 healthy cats subjected to one-step reverse transcription-polymerase chain reaction with primers targeting a highly conserved gene of U3-LTR-gag.
Results: Two clinically ill cats' plasma and saliva samples tested positive for FeLV RNA. Partial nucleotide sequencing and phylogenetic analysis revealed that the current isolates were 94-99% homologous to the previous Malaysian and Japanese FeLV isolates.
Conclusion: Current FeLV isolates from this study displayed higher similarity with the previous Malaysian isolates, signifying that a similar FeLV strain circulated among the cat population in Selangor
Molecular detection of feline leukemia virus in clinically ill cats in Klang Valley, Malaysia
Background and Aim: Feline leukemia virus (FeLV) is classified as Retroviridae gammaretrovirus. FeLV occurs worldwide, including Malaysia. Thus far, only one decade-old study on molecular characterization of Malaysian FeLV isolates exists, which resulted in a scarcity of updated information of current FeLV isolates circulating in Malaysia. This study was conducted to determine the status of FeLV in clinically ill cats and to study the molecular characterization and phylogenetic relatedness of the current isolates.
Materials and Methods: Convenience sampling was performed in 20 cats from the Gasing Veterinary Hospital in Selangor. Plasma and saliva samples were collected from 15 clinically ill cats and 5 healthy cats subjected to one-step reverse transcription-polymerase chain reaction with primers targeting a highly conserved gene of U3-LTR-gag.
Results: Two clinically ill cats' plasma and saliva samples tested positive for FeLV RNA. Partial nucleotide sequencing and phylogenetic analysis revealed that the current isolates were 94-99% homologous to the previous Malaysian and Japanese FeLV isolates.
Conclusion: Current FeLV isolates from this study displayed higher similarity with the previous Malaysian isolates, signifying that a similar FeLV strain circulated among the cat population in Selangor