1,148 research outputs found
Nanoscale Electrostatic Control of Oxide Interfaces
We develop a robust and versatile platform to define nanostructures at oxide
interfaces via patterned top gates. Using LaAlO/SrTiO as a model
system, we demonstrate controllable electrostatic confinement of electrons to
nanoscale regions in the conducting interface. The excellent gate response,
ultra-low leakage currents, and long term stability of these gates allow us to
perform a variety of studies in different device geometries from room
temperature down to 50 mK. Using a split-gate device we demonstrate the
formation of a narrow conducting channel whose width can be controllably
reduced via the application of appropriate gate voltages. We also show that a
single narrow gate can be used to induce locally a superconducting to
insulating transition. Furthermore, in the superconducting regime we see
indications of a gate-voltage controlled Josephson effect.Comment: Version after peer review; includes additional data on
superconductivit
Realization of logically labeled effective pure states for bulk quantum computation
We report the first use of "logical labeling" to perform a quantum
computation with a room-temperature bulk system. This method entails the
selection of a subsystem which behaves as if it were at zero temperature -
except for a decrease in signal strength - conditioned upon the state of the
remaining system. No averaging over differently prepared molecules is required.
In order to test this concept, we execute a quantum search algorithm in a
subspace of two nuclear spins, labeled by a third spin, using solution nuclear
magnetic resonance (NMR), and employing a novel choice of reference frame to
uncouple nuclei.Comment: PRL 83, 3085 (1999). Small changes made to improve readability and
remove ambiguitie
Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications
Dropout events in single-cell RNA sequencing (scRNA-seq) cause many transcripts to go undetected and induce an excess of zero read counts, leading to power issues in differential expression (DE) analysis. This has triggered the development of bespoke scRNA-seq DE methods to cope with zero inflation. Recent evaluations, however, have shown that dedicated scRNA-seq tools provide no advantage compared to traditional bulk RNA-seq tools. We introduce a weighting strategy, based on a zero-inflated negative binomial model, that identifies excess zero counts and generates gene-and cell-specific weights to unlock bulk RNA-seq DE pipelines for zero-inflated data, boosting performance for scRNA-seq
- …
