26 research outputs found
Cross-contact chain
A system is provided for use with wafers that include multiple integrated circuits that include two conductive layers in contact at multiple interfaces. Contact chains are formed beside the integrated circuits, each contact chain formed of the same two layers as the circuits, in the form of conductive segments alternating between the upper and lower layers and with the ends of the segments connected in series through interfaces. A current source passes a current through the series-connected segments, by way of a pair of current tabs connected to opposite ends of the series of segments. While the current flows, voltage measurements are taken between each of a plurality of pairs of voltage tabs, the two tabs of each pair connected to opposite ends of an interface that lies along the series-connected segments. A plot of interface conductances on normal probability chart enables prediction of the yield of good integrated circuits from the wafer
The role of stationarity in magnetic crackling noise
We discuss the effect of the stationarity on the avalanche statistics of
Barkhuasen noise signals. We perform experimental measurements on a
FeB amorphous ribbon and compare the avalanche distributions
measured around the coercive field, where the signal is stationary, with those
sampled through the entire hysteresis loop. In the first case, we recover the
scaling exponents commonly observed in other amorphous materials (,
). while in the second the exponents are significantly larger
(, ). We provide a quantitative explanation of the
experimental results through a model for the depinning of a ferromagnetic
domain wall. The present analysis shed light on the unusually high values for
the Barkhausen noise exponents measured by Spasojevic et al. [Phys. Rev. E 54
2531 (1996)].Comment: submitted to JSTAT. 11 pages 5 figure
End-of-fabrication CMOS process monitor
A set of test 'modules' for verifying the quality of a complementary metal oxide semiconductor (CMOS) process at the end of the wafer fabrication is documented. By electrical testing of specific structures, over thirty parameters are collected characterizing interconnects, dielectrics, contacts, transistors, and inverters. Each test module contains a specification of its purpose, the layout of the test structure, the test procedures, the data reduction algorithms, and exemplary results obtained from 3-, 2-, or 1.6-micrometer CMOS/bulk processes. The document is intended to establish standard process qualification procedures for Application Specific Integrated Circuits (ASIC's)
Power spectra of self-organized critical sandpiles
We analyze the power spectra of avalanches in two classes of self-organized
critical sandpile models, the Bak-Tang-Wiesenfeld model and the Manna model. We
show that these decay with a power law, where the exponent value
is significantly smaller than 2 and equals the scaling exponent
relating the avalanche size to its duration. We discuss the basic ingredients
behind this result, such as the scaling of the average avalanche shape.Comment: 7 pages, 3 figures, submitted to JSTA
Watt-level millimeter-wave monolithic diode-grid frequency multipliers
Monolithic planar arrays containing in excess of 1000 Schottky diodes have produced watt level output at 66 GHz in a doubler configuration in excellent agreement with large signal predictions of the frequency multiplication. Current efforts are concentrated on fabricating and developing arrays of novel barrier-intrinsic-N+ (BIN) diode which promise increased performance in tripler and quintupler configurations
Hysteresis and Avalanches in the Random Anisotropy Ising Model
The behaviour of the Random Anisotropy Ising model at T=0 under local
relaxation dynamics is studied. The model includes a dominant ferromagnetic
interaction and assumes an infinite anisotropy at each site along local
anisotropy axes which are randomly aligned. Two different random distributions
of anisotropy axes have been studied. Both are characterized by a parameter
that allows control of the degree of disorder in the system. By using numerical
simulations we analyze the hysteresis loop properties and characterize the
statistical distribution of avalanches occuring during the metastable evolution
of the system driven by an external field. A disorder-induced critical point is
found in which the hysteresis loop changes from displaying a typical
ferromagnetic magnetization jump to a rather smooth loop exhibiting only tiny
avalanches. The critical point is characterized by a set of critical exponents,
which are consistent with the universal values proposed from the study of other
simpler models.Comment: 40 pages, 21 figures, Accepted for publication in Phys. Rev.
Hysteresis, Avalanches, and Disorder Induced Critical Scaling: A Renormalization Group Approach
We study the zero temperature random field Ising model as a model for noise
and avalanches in hysteretic systems. Tuning the amount of disorder in the
system, we find an ordinary critical point with avalanches on all length
scales. Using a mapping to the pure Ising model, we Borel sum the
expansion to for the correlation length exponent. We sketch a
new method for directly calculating avalanche exponents, which we perform to
. Numerical exponents in 3, 4, and 5 dimensions are in good
agreement with the analytical predictions.Comment: 134 pages in REVTEX, plus 21 figures. The first two figures can be
obtained from the references quoted in their respective figure captions, the
remaining 19 figures are supplied separately in uuencoded forma
Dynamics of a ferromagnetic domain wall: avalanches, depinning transition and the Barkhausen effect
We study the dynamics of a ferromagnetic domain wall driven by an external
magnetic field through a disordered medium. The avalanche-like motion of the
domain walls between pinned configurations produces a noise known as the
Barkhausen effect. We discuss experimental results on soft ferromagnetic
materials, with reference to the domain structure and the sample geometry, and
report Barkhausen noise measurements on FeCoB amorphous
alloy. We construct an equation of motion for a flexible domain wall, which
displays a depinning transition as the field is increased. The long-range
dipolar interactions are shown to set the upper critical dimension to ,
which implies that mean-field exponents (with possible logarithmic correction)
are expected to describe the Barkhausen effect. We introduce a mean-field
infinite-range model and show that it is equivalent to a previously introduced
single-degree-of-freedom model, known to reproduce several experimental
results. We numerically simulate the equation in , confirming the
theoretical predictions. We compute the avalanche distributions as a function
of the field driving rate and the intensity of the demagnetizing field. The
scaling exponents change linearly with the driving rate, while the cutoff of
the distribution is determined by the demagnetizing field, in remarkable
agreement with experiments.Comment: 17 RevTeX pages, 19 embedded ps figures + 1 extra figure, submitted
to Phys. Rev.
Disorder-Induced Critical Phenomena in Hysteresis: Numerical Scaling in Three and Higher Dimensions
We present numerical simulations of avalanches and critical phenomena
associated with hysteresis loops, modeled using the zero-temperature
random-field Ising model. We study the transition between smooth hysteresis
loops and loops with a sharp jump in the magnetization, as the disorder in our
model is decreased. In a large region near the critical point, we find scaling
and critical phenomena, which are well described by the results of an epsilon
expansion about six dimensions. We present the results of simulations in 3, 4,
and 5 dimensions, with systems with up to a billion spins (1000^3).Comment: Condensed and updated version of cond-mat/9609072,``Disorder-Induced
Critical Phenomena in Hysteresis: A Numerical Scaling Analysis'