542 research outputs found

    Pilot Experiments with Electrodialysis and Ozonation for the Production of a Fertilizer from Urine

    Get PDF
    Pilot tests were performed with a process combination of electrodialysis and ozonation for the removal of micropollutants and the concentration of nutrients in urine. In continuous and batch experiments, maximum concentration factors up to 3.5 and 4.1 were obtained, respectively. The desalination capacity did not decrease significantly during continuous operation periods of several weeks. Membrane cleaning after 195 days resulted in approximately 35% increase in desalination rate. The Yeast Estrogen Screen (YES), a bioassay that selectively detects oestrogenic compounds, confirmed that about 90% of the oestrogenic activity was removed by electrodialysis. HPLC analysis showed that ibuprofen was removed to a high extent, while other micropollutants were below the detection limit. In view of the fact that ibuprofen is among the most rapidly transported micropollutants in electrodialysis processes, this result indicates that electrodialysis provides an effective barrier for micropollutants. Standardised plant growth tests were performed in the field with the salt solution resulting from the treatment by electrodialysis and subsequent ozonation. The results show that the plant height is comparable to synthetic fertilisers, but the crop yield is slightly lower. The latter is probably caused by volatilisation losses during field application, which can be prevented by improved application technologies

    Microseismicity of the Mid-Atlantic Ridge at 7°S-8°15′S and at the Logatchev Massif oceanic core complex at 14°40′N-14°50′N

    Get PDF
    Lithospheric formation at slow spreading rates is heterogeneous with multiple modalities, favoring symmetric spreading where magmatism dominates or core complex and inside corner high formation where tectonics dominate. We report microseismicity from three deployments of seismic networks at the Mid-Atlantic Ridge (MAR). Two networks surveyed the MAR near 7 degrees S in the vicinity of the Ascension transform fault. Three inside corner high settings were investigated. However, they remained seismically largely inactive and major seismic activity occurred along the center of the median valley. In contrast, at the Logatchev Massif core complex at 14 degrees 45N seismicity was sparse within the center of the median valley but concentrated along the eastern rift mountains just west of the serpentine hosted Logatchev hydrothermal vent field. To the north and south of the massif, however, seismic activity occurred along the ridge axis, emphasizing the asymmetry of seismicity at the Logatchev segment. Focal mechanisms indicated a large number of reverse faulting events occurring in the vicinity of the vent field at 3-5 km depth, which we interpret to reflect volume expansion accompanying serpentinization. At shallower depth of 2-4 km, some earthquakes in the vicinity of the vent field showed normal faulting behavior, suggesting that normal faults facilitates hydrothermal circulation feeding the vent field. Further, a second set of cross-cutting faults occurred, indicating that the surface location of the field is controlled by local fault systems

    Massive Stars: Their Environment and Formation

    Get PDF
    Cloud environment is thought to play a critical role in determining the mechanism of formation of massive stars. In this contribution we review the physical characteristics of the environment around recently formed massive stars. Particular emphasis is given to recent high angular resolution observations which have improved our knowledge of the physical conditions and kinematics of compact regions of ionized gas and of dense and hot molecular cores associated with luminous O and B stars. We will show that this large body of data, gathered during the last decade, has allowed significant progress in the understanding of the physical processes that take place during the formation and early evolution of massive stars.Comment: Pub. Astron. Soc. of Pacific (Invited Review), 95 pages (Latex), 5 pages (tables, Latex), 11 postscript or gif figure

    Sources of Uncertainty in Regional and Global Terrestrial CO2 Exchange Estimates

    Get PDF
    The Global Carbon Budget 2018 (GCB2018) estimated by the atmospheric CO2 growth rate, fossil fuel emissions, and modeled (bottom-up) land and ocean fluxes cannot be fully closed, leading to a “budget imbalance,” highlighting uncertainties in GCB components. However, no systematic analysis has been performed on which regions or processes contribute to this term. To obtain deeper insight on the sources of uncertainty in global and regional carbon budgets, we analyzed differences in Net Biome Productivity (NBP) for all possible combinations of bottom-up and top-down data sets in GCB2018: (i) 16 dynamic global vegetation models (DGVMs), and (ii) 5 atmospheric inversions that match the atmospheric CO2 growth rate. We find that the global mismatch between the two ensembles matches well the GCB2018 budget imbalance, with Brazil, Southeast Asia, and Oceania as the largest contributors. Differences between DGVMs dominate global mismatches, while at regional scale differences between inversions contribute the most to uncertainty. At both global and regional scales, disagreement on NBP interannual variability between the two approaches explains a large fraction of differences. We attribute this mismatch to distinct responses to El Niño–Southern Oscillation variability between DGVMs and inversions and to uncertainties in land use change emissions, especially in South America and Southeast Asia. We identify key needs to reduce uncertainty in carbon budgets: reducing uncertainty in atmospheric inversions (e.g., through more observations in the tropics) and in land use change fluxes, including more land use processes and evaluating land use transitions (e.g., using high-resolution remote-sensing), and, finally, improving tropical hydroecological processes and fire representation within DGVMs.</p

    Gasless balloon laparoscopy

    Get PDF
    The concept of balloon laparoscopy (B-LSC) pursues the simplification of conventional diagnostic laparoscopy (LSC). The pneumoperitoneum is replaced by a transparent balloon, which is positioned in front of the optical system. It shall be shown that with this arrangement diagnostic LSC can be performed outside of the operating room without requiring general anesthesia.An inflatable balloon was developed for a 30°/3.5-mm rod lens. Intra-abdominally the balloon was expanded to a diameter of 30 mm by air insufflation, and B-LSC was performed. Twelve patients were examined in general anesthesia before laparoscopic surgery. Twelve patients were subjected to B-LSC fully awake or with sedation (midazolam or propofol/S-ketamine) as a “second-look” procedure by way of a flexible trocar (port) left in the abdominal wall at the end of previous operation. Eight patients have been first provided with a trocar under sedation (midazolam or propofol/S-ketamine) combined with local anesthesia, and B-LSC was performed before laparoscopic surgery.On a scale of 1–5, the general impression was rated 1.9, the navigability to the different abdominal organs 2.5, the resolution 1.5, the stability of the system optic/trocar 2.1, the suitability of the balloon format 1.9, and the stability of the balloon against lateral shear forces 2.4. The degree of painfulness of the examination was rated 2.8, the tolerance of the port 1.4, and the degree of painfulness of trocar placement at 2.5. On a scale of 1 to 3, the strain of the abdominal musculature was rated 1.4 and the obstruction by adhesions 1.7.B-LSC is technically practicable with good imaging qualities and without requiring pneumoperitoneum. It is tolerated in great extent under slight sedation and particularly well under deep sedation. The procedure is suitable for diagnostics of unclear abdominal conditions, as a second-look LSC and also as a staging LSC
    corecore