2,455 research outputs found

    Design and Implementation of a Mobile Exergaming Platform

    Full text link
    This paper describes the design, implementation, and initial testing of a reusable platform for the creation of pervasive games with geo-localization services. We concentrate on role-playing games built by combining several types of simpler mini-games having three major components: Quests; Collectables; and Non-player characters (NPC). Quests encourage players to be active in their physical environment and take part in collaborative play; Collectables provide motivation; and NPCs enable player-friendly interaction with the platform. Each of these elements poses different technical requirements, which were met by implementing the gaming platform using the inTrack pervasive middle-ware being developed by our group. Several sample games were implemented and tested within the urban environment of Kyoto, Japan, using gaming clients running on mobile phones from NTT DoCoMo, Japan's largest mobile provider.Comment: 8 pages, 3 figures, International Conference on Intelligent Technologies for Interactive Entertainment, INTETAIN 200

    Conserved microRNA editing in mammalian evolution, development and disease.

    Get PDF
    BACKGROUND: Mammalian microRNAs (miRNAs) are sometimes subject to adenosine-to-inosine RNA editing, which can lead to dramatic changes in miRNA target specificity or expression levels. However, although a few miRNAs are known to be edited at identical positions in human and mouse, the evolution of miRNA editing has not been investigated in detail. In this study, we identify conserved miRNA editing events in a range of mammalian and non-mammalian species. RESULTS: We demonstrate deep conservation of several site-specific miRNA editing events, including two that date back to the common ancestor of mammals and bony fishes some 450 million years ago. We also find evidence of a recent expansion of an edited miRNA family in placental mammals and show that editing of these miRNAs is associated with changes in target mRNA expression during primate development and aging. While global patterns of miRNA editing tend to be conserved across species, we observe substantial variation in editing frequencies depending on tissue, age and disease state: editing is more frequent in neural tissues compared to heart, kidney and testis; in older compared to younger individuals; and in samples from healthy tissues compared to tumors, which together suggests that miRNA editing might be associated with a reduced rate of cell proliferation. CONCLUSIONS: Our results show that site-specific miRNA editing is an evolutionarily conserved mechanism, which increases the functional diversity of mammalian miRNA transcriptomes. Furthermore, we find that although miRNA editing is rare compared to editing of long RNAs, miRNAs are greatly overrepresented among conserved editing targets

    Repurposing of promoters and enhancers during mammalian evolution.

    Get PDF
    Promoters and enhancers-key controllers of gene expression-have long been distinguished from each other based on their function. However, recent work suggested that common architectural and functional features might have facilitated the conversion of one type of element into the other during evolution. Here, based on cross-mammalian analyses of epigenome and transcriptome data, we provide support for this hypothesis by detecting 445 regulatory elements with signatures of activity turnover (termed P/E elements). Most events represent transformations of putative ancestral enhancers into promoters, leading to the emergence of species-specific transcribed loci or 5' exons. Distinct GC sequence compositions and stabilizing 5' splicing (U1) regulatory motif patterns may have predisposed P/E elements to regulatory repurposing, and changes in the U1 and polyadenylation signal densities and distributions likely drove the evolutionary activity switches. Our work suggests that regulatory repurposing facilitated regulatory innovation and the origination of new genes and exons during evolution

    Evidence for a Massive Protocluster in S255N

    Full text link
    S255N is a luminous far-infrared source that contains many indications of active star formation but lacks a prominent near-infrared stellar cluster. We present mid-infrared through radio observations aimed at exploring the evolutionary state of this region. Our observations include 1.3mm continuum and spectral line data from the Submillimeter Array, VLA 3.6cm continuum and 1.3cm water maser data, and multicolor IRAC images from the Spitzer Space Telescope. The cometary morphology of the previously-known UCHII region G192.584-0.041 is clearly revealed in our sensitive, multi-configuration 3.6cm images. The 1.3mm continuum emission has been resolved into three compact cores, all of which are dominated by dust emission and have radii < 7000AU. The mass estimates for these cores range from 6 to 35 Msun. The centroid of the brightest dust core (SMA1) is offset by 1.1'' (2800 AU) from the peak of the cometary UCHII region and exhibits the strongest HC3N, CN, and DCN line emission in the region. SMA1 also exhibits compact CH3OH, SiO, and H2CO emission and likely contains a young hot core. We find spatial and kinematic evidence that SMA1 may contain further multiplicity, with one of the components coincident with a newly-detected H2O maser. There are no mid-infrared point source counterparts to any of the dust cores, further suggesting an early evolutionary phase for these objects. The dominant mid-infrared emission is a diffuse, broadband component that traces the surface of the cometary UCHII region but is obscured by foreground material on its southern edge. An additional 4.5 micron linear feature emanating to the northeast of SMA1 is aligned with a cluster of methanol masers and likely traces a outflow from a protostar within SMA1. Our observations provide direct evidence that S255N is forming a cluster of intermediate to high-mass stars.Comment: 34 pages, 11 figures, accepted for publication in The Astronomical Journa

    Meniscal Repair in Pediatric Populations: A Systematic Review of Outcomes

    Get PDF
    Background: Loss of meniscal tissue in the pediatric population can have long-term consequences on joint health, highlighting the importance of meniscal preservation in this group. Purpose: To systematically review reported knee outcome measures and complication rates after repair of meniscal tears in children and adolescents. Study Design: Systematic review; Level of evidence, 4. Methods: A review of the literature regarding the existing evidence for pediatric meniscal tear outcomes was performed through use of the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, PubMed (1980-present), and MEDLINE (1980-present). Included were articles in English that reported the outcomes of meniscal tears in the pediatric population (\u3c18 years old) with a follow-up of more than 12 months. Clinical outcome scores were reviewed. Results: A total of 1003 total studies were initially retrieved, with 8 meeting the inclusion criteria. The review included 287 patients (165 male, 122 female), mean age 15.1 years (range, 4-18 years), with 301 meniscal tears (reported: 134 medial, 127 lateral, and 32 both medial and lateral, 8 location unspecified). Concomitant anterior cruciate ligament reconstruction was performed in 52% (158/ 301) of meniscal repairs. The average reported postoperative Lysholm scores ranged from 85.4 to 96.3, and the average reported postoperative Tegner activity scores ranged from 6.2 to 8. Conclusion: Arthroscopic repair of a meniscal tear in the pediatric and adolescent population is an effective treatment option that has a low failure rate, enhances postoperative clinical outcomes, and preserves meniscal tissues

    A Review on Mechanics and Mechanical Properties of 2D Materials - Graphene and Beyond

    Full text link
    Since the first successful synthesis of graphene just over a decade ago, a variety of two-dimensional (2D) materials (e.g., transition metal-dichalcogenides, hexagonal boron-nitride, etc.) have been discovered. Among the many unique and attractive properties of 2D materials, mechanical properties play important roles in manufacturing, integration and performance for their potential applications. Mechanics is indispensable in the study of mechanical properties, both experimentally and theoretically. The coupling between the mechanical and other physical properties (thermal, electronic, optical) is also of great interest in exploring novel applications, where mechanics has to be combined with condensed matter physics to establish a scalable theoretical framework. Moreover, mechanical interactions between 2D materials and various substrate materials are essential for integrated device applications of 2D materials, for which the mechanics of interfaces (adhesion and friction) has to be developed for the 2D materials. Here we review recent theoretical and experimental works related to mechanics and mechanical properties of 2D materials. While graphene is the most studied 2D material to date, we expect continual growth of interest in the mechanics of other 2D materials beyond graphene

    Does Greater Low Frequency EEG Activity in Normal Immaturity and in Children with Epilepsy Arise in the Same Neuronal Network?

    Get PDF
    Greater low frequency power (<8Hz) in the electroencephalogram (EEG) at rest is normal in the immature developing brain of children when compared to adults. Children with epilepsy also have greater low frequency interictal resting EEG activity. Whether these power elevations reflect brain immaturity due to a developmental lag or the underlying epileptic pathophysiology is unclear. The present study addresses this question by analyzing spectral EEG topographies and sources for normally developing children and children with epilepsy. We first compared the resting EEG of healthy children to that of healthy adults to isolate effects related to normal brain immaturity. Next, we compared the EEG from 10 children with generalized cryptogenic epilepsy to the EEG of 24 healthy children to isolate effects related to epilepsy. Spectral analysis revealed that global low (delta: 1-3Hz, theta: 4-7Hz), medium (alpha: 8-12Hz) and high (beta: 13-25Hz) frequency EEG activity was greater in children without epilepsy compared to adults, and even further elevated for children with epilepsy. Topographical and tomographic EEG analyses showed that normal immaturity corresponded to greater delta and theta activity at fronto-central scalp and brain regions, respectively. In contrast, the epilepsy-related activity elevations were predominantly in the alpha band at parieto-occipital electrodes and brain regions, respectively. We conclude that lower frequency activity can be a sign of normal brain immaturity or brain pathology depending on the specific topography and frequency of the oscillating neuronal networ

    Continental-scale patterns in diel flight timing of high-altitude migratory insects

    Get PDF
    Many insects depend on high-altitude, migratory movements during part of their life cycle. The daily timing of these migratory movements is not random, e.g. many insect species show peak migratory flight activity at dawn, noon or dusk. These insects provide essential ecosystem services such as pollination but also contribute to crop damage. Quantifying the diel timing of their migratory flight and its geographical and seasonal variation, are hence key towards effective conservation and pest management. Vertical-looking radars provide continuous and automated measurements of insect migration, but large-scale application has not been possible because of limited availability of suitable devices. Here, we quantify patterns in diel flight periodicity of migratory insects between 50 and 500 m above ground level during March-October 2021 using a network of 17 vertical-looking radars across Europe. Independent of the overall daily migratory movements and location, peak migratory movements occur around noon, during crepuscular evening and occasionally the morning. Relative daily proportions of insect migration intensity and traffic during the diel phases of crepuscular-morning, day, crepuscular-evening and night remain largely equal throughout May-September and across Europe. These findings highlight, extend, and generalize previous regional-scale findings on diel migratory insect movement patterns to the whole of temperate Europe.This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'
    corecore