92 research outputs found
Non-Markovian Stochastic Resonance
The phenomenological linear response theory of non-Markovian Stochastic
Resonance (SR) is put forward for stationary two-state renewal processes. In
terms of a derivation of a non-Markov regression theorem we evaluate the
characteristic SR-quantifiers; i.e. the spectral power amplification (SPA) and
the signal-to-noise ratio (SNR), respectively. In clear contrast to Markovian
SR, a characteristic benchmark of genuine non-Markovian SR is its distinctive
dependence of the SPA and SNR on small (adiabatic) driving frequencies;
particularly, the adiabatic SNR becomes strongly suppressed over its Markovian
counterpart. This non-Markovian SR theory is elucidated for a fractal gating
dynamics of a potassium ion channel possessing an infinite variance of closed
sojourn times.Comment: 4 pages, 1 figur
Noise Effects on the Complex Patterns of Abnormal Heartbeats
Patients at high risk for sudden death often exhibit complex heart rhythms in
which abnormal heartbeats are interspersed with normal heartbeats. We analyze
such a complex rhythm in a single patient over a 12-hour period and show that
the rhythm can be described by a theoretical model consisting of two
interacting oscillators with stochastic elements. By varying the magnitude of
the noise, we show that for an intermediate level of noise, the model gives
best agreement with key statistical features of the dynamics.Comment: 4 pages, 4 figures, RevTe
Scale Invariance in the Nonstationarity of Physiological Signals
We introduce a segmentation algorithm to probe temporal organization of
heterogeneities in human heartbeat interval time series. We find that the
lengths of segments with different local values of heart rates follow a
power-law distribution. This scale-invariant structure is not a simple
consequence of the long-range correlations present in the data. We also find
that the differences in mean heart rates between consecutive segments display a
common functional form, but with different parameters for healthy individuals
and for patients with heart failure. This finding may provide information into
the way heart rate variability is reduced in cardiac disease.Comment: 13 pages, 5 figures, corrected typo
Amplification by stochastic interference
A new method is introduced to obtain a strong signal by the interference of
weak signals in noisy channels. The method is based on the interference of 1/f
noise from parallel channels. One realization of stochastic interference is the
auditory nervous system. Stochastic interference may have broad potential
applications in the information transmission by parallel noisy channels
From regional pulse vaccination to global disease eradication: insights from a mathematical model of Poliomyelitis
Mass-vaccination campaigns are an important strategy in the global fight
against poliomyelitis and measles. The large-scale logistics required for these
mass immunisation campaigns magnifies the need for research into the
effectiveness and optimal deployment of pulse vaccination. In order to better
understand this control strategy, we propose a mathematical model accounting
for the disease dynamics in connected regions, incorporating seasonality,
environmental reservoirs and independent periodic pulse vaccination schedules
in each region. The effective reproduction number, , is defined and proved
to be a global threshold for persistence of the disease. Analytical and
numerical calculations show the importance of synchronising the pulse
vaccinations in connected regions and the timing of the pulses with respect to
the pathogen circulation seasonality. Our results indicate that it may be
crucial for mass-vaccination programs, such as national immunisation days, to
be synchronised across different regions. In addition, simulations show that a
migration imbalance can increase and alter how pulse vaccination should
be optimally distributed among the patches, similar to results found with
constant-rate vaccination. Furthermore, contrary to the case of constant-rate
vaccination, the fraction of environmental transmission affects the value of
when pulse vaccination is present.Comment: Added section 6.1, made other revisions, changed titl
Extreme radio flares and associated X-ray variability from young stellar objects in the Orion Nebula Cluster
Jan Forbrich, et al, ‘Extreme Radio Flares and Associated XRay Variability from Young Stellar Objects in the Orion Nebula Cluster’, The Astrophysical Journal, Vol. 844 (2), July 2017. DOI: https://doi.org/10.3847/1538-4357/aa7aa4. © 2017 The American Astronomical Society. All Rights Reserved.Young stellar objects are known to exhibit strong radio variability on timescales of weeks to months, and a few reports have documented extreme radio flares with at least an order of magnitude change in flux density on timescales of hours to days. However, there have been few constraints on the occurrence rate of such radio flares or on the correlation with pre-main sequence X-ray flares, although such correlations are known for the Sun and nearby active stars. Here we report simultaneous deep VLA radio and Chandra X-ray observations of the Orion Nebula Cluster, targeting hundreds of sources to look for the occurrence rate of extreme radio variability and potential correlation with the most extreme X-ray variability. We identify 13 radio sources with extreme radio variability, with some showing an order of magnitude change in flux density in less than 30 minutes. All of these sources show X-ray emission and variability, but we find clear correlations with extreme radio flaring only on timescales <1 hr. Strong X-ray variability does not predict the extreme radio sources and vice versa. Radio flares thus provide us with a new perspective on high-energy processes in YSOs and the irradiation of their protoplanetary disks. Finally, our results highlight implications for interferometric imaging of sources violating the constant-sky assumption.Peer reviewedFinal Published versio
Is a Genome a Codeword of an Error-Correcting Code?
Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction
Transition from Persistent to Anti-Persistent Correlations in Postural Sway Indicates Velocity-Based Control
The displacement of the center-of-pressure (COP) during quiet stance has often been accounted for by the control of COP position dynamics. In this paper, we discuss the conclusions drawn from previous analyses of COP dynamics using fractal-related methods. On the basis of some methodological clarification and the analysis of experimental data using stabilogram diffusion analysis, detrended fluctuation analysis, and an improved version of spectral analysis, we show that COP velocity is typically bounded between upper and lower limits. We argue that the hypothesis of an intermittent velocity-based control of posture is more relevant than position-based control. A simple model for COP velocity dynamics, based on a bounded correlated random walk, reproduces the main statistical signatures evidenced in the experimental series. The implications of these results are discussed
- …