91 research outputs found

    Design and evaluation of low-cost laminated wood composite blades for intermediate size wind turbines: Blade design, fabrication concept, and cost analysis

    Get PDF
    As part of a program to reduce wind turbine costs, an evaluation was conducted of a laminated wood composite blade for the Mod-OA 200 kW wind turbine. The effort included the design and fabrication concept for the blade, together with cost and load analyses. The blade structure is composed of laminated Douglas fir veneers for the primary spar and nose sections, and honeycomb cored plywood panels for the trailing edges sections. The attachment of the wood blade to the rotor hub was through load takeoff studs bonded into the blade root. Tests were conducted on specimens of the key structural components to verify the feasibility of the concept. It is concluded that the proposed wood composite blade design and fabrication concept is suitable for Mod-OA size turbines (125-ft diameter rotor) at a cost that is very competitive with other methods of manufacture

    Evaluation of urethane for feasibility of use in wind turbine blade design

    Get PDF
    A preliminary evaluation was conducted of the use of cast urethane as a possible material for low-cost blades for wind turbines. Specimen test data are presented for ultimate tensile strength, elastic modulus, flexural strain, creep, and fatigue properties of a number of urethane formulations. Data are also included for a large-scale urethane blade section composed of cast symmetrical half-profiles tested as a cantilever beam. Based on these results, an analysis was conducted of a full-scale blade design of cast urethane that meets the design specifications of the rotor blades for the NASA/DOE experimental 100-kW MOD-0 wind turbine. Because of the low value of elastic modulus for urethane (around 457 000 psi), the design loads would have to be carried by metal reinforcement. Considerations for further evaluation are noted

    Innovative Education in Agroecology: Experiential Learning for a Sustainable Agriculture

    Get PDF
    The transdisciplinary field of agroecology provides a platform for experiential learning based on an expanded vision of research on sustainable farming and food systems and the application of results in creating effective learning landscapes for students. With increased recognition of limitations of fossil fuels, fresh water, and available farmland, educators are changing focus from strategies to reach maximum yields to those that feature resource use efficiency and resilience of production systems in a less benign climate. To help students deal with complexity and uncertainty and a wide range of biological and social dimensions of the food challenge, a whole-systems approach that involves life-cycle analysis and consideration of long-term impacts of systems is essential. Seven educational case studies in the Nordic Region and the U.S. Midwest demonstrate how educators can incorporate theory of the ecology of food systems with the action learning component needed to develop student potentials to create responsible change in society. New roles of agroecology instructors and students are described as they pursue a co-learning strategy to develop and apply technology to assure the productivity and security of future food system
    • 

    corecore