95 research outputs found
EphB3 signaling propagates synaptic dysfunction in the traumatic injured brain
Traumatic brain injury (TBI), ranging from mild concussion to severe penetrating wounds, can involve brain regions that contain damaged or lost synapses in the absence of neuronal death. These affected regions significantly contribute to sensory, motor and/or cognitive deficits. Thus, studying the mechanisms responsible for synaptic instability and dysfunction is important for protecting the nervous system from the consequences of progressive TBI. Our controlled cortical impact (CCI) injury produces ~20% loss of synapses and mild changes in synaptic protein levels in the CA3-CA1 hippocampus without neuronal losses. These synaptic changes are associated with functional deficits, indicated by > 50% loss in synaptic plasticity and impaired learning behavior. We show that the receptor tyrosine kinase EphB3 participates in CCI injury-induced synaptic damage, where EphB3−/− mice show preserved long-term potentiation and hippocampal-dependent learning behavior as compared with wild type (WT) injured mice. Improved synaptic function in the absence of EphB3 results from attenuation in CCI injury-induced synaptic losses and reduced d-serine levels compared with WT injured mice. Together, these findings suggest that EphB3 signaling plays a deleterious role in synaptic stability and plasticity after TBI
Urokinase-Type Plasminogen Activator Promotes Paracellular Transmigration of Neutrophils Via Mac-1, But Independently of Urokinase-Type Plasminogen Activator Receptor
Background: Urokinase-type plasminogen activator (uPA) has recently been implicated in the pathogenesis of ischemia-reperfusion (I/R) injury. The underlying mechanisms remain largely unclear.
Methods and Results: Using in vivo microscopy on the mouse cremaster muscle, I/R-elicited firm adherence and transmigration of neutrophils were found to be significantly diminished in uPA-deficient mice and in mice treated with the uPA inhibitor WX-340, but not in uPA receptor (uPAR)–deficient mice. Interestingly, postischemic leukocyte responses were significantly reduced on blockade of the integrin CD11b/Mac-1, which also serves as uPAR receptor. Using a cell transfer technique, postischemic adherence and transmigration of wild-type leukocytes were significantly decreased in uPA-deficient animals, whereas uPA-deficient leukocytes exhibited a selectively reduced transmigration in wild-type animals. On I/R or stimulation with recombinant uPA, >90% of firmly adherent leukocytes colocalized with CD31-immunoreactive endothelial junctions as detected by in vivo fluorescence microscopy. In a model of hepatic I/R, treatment with WX-340 significantly attenuated postischemic neutrophil infiltration and tissue injury.
Conclusions: Our data suggest that endothelial uPA promotes intravascular adherence, whereas leukocyte uPA facilitates the subsequent paracellular transmigration of neutrophils during I/R. This process is regulated via CD11b/Mac-1, and does not require uPAR. Pharmacological blockade of uPA interferes with these events and effectively attenuates postischemic tissue injury
Thermodynamics of Black Holes in Two (and Higher) Dimensions
A comprehensive treatment of black hole thermodynamics in two-dimensional
dilaton gravity is presented. We derive an improved action for these theories
and construct the Euclidean path integral. An essentially unique boundary
counterterm renders the improved action finite on-shell, and its variational
properties guarantee that the path integral has a well-defined semi-classical
limit. We give a detailed discussion of the canonical ensemble described by the
Euclidean partition function, and examine various issues related to stability.
Numerous examples are provided, including black hole backgrounds that appear in
two dimensional solutions of string theory. We show that the Exact String Black
Hole is one of the rare cases that admits a consistent thermodynamics without
the need for an external thermal reservoir. Our approach can also be applied to
certain higher-dimensional black holes, such as Schwarzschild-AdS,
Reissner-Nordstrom, and BTZ.Comment: 63 pages, 3 pdf figures, v2: added reference
An action for the exact string black hole
A local action is constructed describing the exact string black hole
discovered by Dijkgraaf, Verlinde and Verlinde in 1992. It turns out to be a
special 2D Maxwell-dilaton gravity theory, linear in curvature and field
strength. Two constants of motion exist: mass M>1, determined by the level k,
and U(1)-charge Q>0, determined by the value of the dilaton at the origin. ADM
mass, Hawking temperature T_H \propto \sqrt{1-1/M} and Bekenstein-Hawking
entropy are derived and studied in detail. Winding/momentum mode duality
implies the existence of a similar action, arising from a branch ambiguity,
which describes the exact string naked singularity. In the strong coupling
limit the solution dual to AdS_2 is found to be the 5D Schwarzschild black
hole. Some applications to black hole thermodynamics and 2D string theory are
discussed and generalizations - supersymmetric extension, coupling to matter
and critical collapse, quantization - are pointed out.Comment: 41 pages, 2 eps figures, dedicated to Wolfgang Kummer on occasion of
his Emeritierung; v2: added ref; v3: extended discussion in sections 3.2, 3.3
and at the end of 5.3 by adding 2 pages of clarifying text; updated refs;
corrected typo
The RhoGEF Trio Functions in Sculpting Class Specific Dendrite Morphogenesis in Drosophila Sensory Neurons
As the primary sites of synaptic or sensory input in the nervous system, dendrites play an essential role in processing neuronal and sensory information. Moreover, the specification of class specific dendrite arborization is critically important in establishing neural connectivity and the formation of functional networks. Cytoskeletal modulation provides a key mechanism for establishing, as well as reorganizing, dendritic morphology among distinct neuronal subtypes. While previous studies have established differential roles for the small GTPases Rac and Rho in mediating dendrite morphogenesis, little is known regarding the direct regulators of these genes in mediating distinct dendritic architectures.Here we demonstrate that the RhoGEF Trio is required for the specification of class specific dendritic morphology in dendritic arborization (da) sensory neurons of the Drosophila peripheral nervous system (PNS). Trio is expressed in all da neuron subclasses and loss-of-function analyses indicate that Trio functions cell-autonomously in promoting dendritic branching, field coverage, and refining dendritic outgrowth in various da neuron subtypes. Moreover, overexpression studies demonstrate that Trio acts to promote higher order dendritic branching, including the formation of dendritic filopodia, through Trio GEF1-dependent interactions with Rac1, whereas Trio GEF-2-dependent interactions with Rho1 serve to restrict dendritic extension and higher order branching in da neurons. Finally, we show that de novo dendritic branching, induced by the homeodomain transcription factor Cut, requires Trio activity suggesting these molecules may act in a pathway to mediate dendrite morphogenesis.Collectively, our analyses implicate Trio as an important regulator of class specific da neuron dendrite morphogenesis via interactions with Rac1 and Rho1 and indicate that Trio is required as downstream effector in Cut-mediated regulation of dendrite branching and filopodia formation
MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Prior to the deep learning era, shape was commonly used to describe the
objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are
predominantly diverging from computer vision, where voxel grids, meshes, point
clouds, and implicit surface models are used. This is seen from numerous
shape-related publications in premier vision conferences as well as the growing
popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915
models). For the medical domain, we present a large collection of anatomical
shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument,
called MedShapeNet, created to facilitate the translation of data-driven vision
algorithms to medical applications and to adapt SOTA vision algorithms to
medical problems. As a unique feature, we directly model the majority of shapes
on the imaging data of real patients. As of today, MedShapeNet includes 23
dataset with more than 100,000 shapes that are paired with annotations (ground
truth). Our data is freely accessible via a web interface and a Python
application programming interface (API) and can be used for discriminative,
reconstructive, and variational benchmarks as well as various applications in
virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present
use cases in the fields of classification of brain tumors, facial and skull
reconstructions, multi-class anatomy completion, education, and 3D printing. In
future, we will extend the data and improve the interfaces. The project pages
are: https://medshapenet.ikim.nrw/ and
https://github.com/Jianningli/medshapenet-feedbackComment: 16 page
Recommended from our members
Neurogenesis: is the adult stem cell young or old?
Stem cell biology is one of the most exciting, controversial, and debated fields in science today. It has been suggested that neuronal replacement therapy using stem cell transplants may be one possible answer to a host of neuropathological disorders including spinal cord injury, stroke, and neurodegenerative diseases. Important sources for stem cells include the developing embryo and adult central nervous system, but will these populations of cells exhibit similar behavior and responses to stimuli? This review will discuss some important similarities and differences between the embryonic and adult stem cell, as well as the basis for developing therapeutic approaches for stem cell replacement
Recommended from our members
Ephrins and Eph Receptor Tyrosine Kinases in Synapse Formation
Here, we discuss what is known about the function of ephrins and Eph receptors In synapse formation in the peripheral nervous system and central nervous system. Ephrins have been shown to be present and functional at synapses at the neuromuscular junction and in the brain; evidence at the neuromuscular junction implicates ephrins in the topographic mapping of synapses on certain muscles. Also, certain Eph receptors also function in synapse formation but less information is known about them including their distribution and function. In addition, future directions are defined. Together, these data implicate ephrins, as well as Ephs, strongly in synaptic development
Recommended from our members
Multiple Eph receptors and B-class ephrins regulate midline crossing of corpus callosum fibers in the developing mouse forebrain
Agenesis of the corpus callosum (CC) is a rare birth defect that occurs in isolated conditions and in combination with other developmental cerebral abnormalities. Recent identification of families of growth and guidance molecules has generated interest in the mechanisms that regulate callosal growth. One family, ephrins and Eph receptors, has been implicated in mediating midline pathfinding decisions; however, the complexity of these interactions has yet to be unraveled. Our studies shed light on which B-class ephrins and Eph receptors function to regulate CC midline growth and how these molecules interact with important guideposts during development. We show that multiple Eph receptors (B1, B2, B3, and A4) and B-class ephrins (B1, B2, and B3) are present and function in developing forebrain callosal fibers based on both spatial and temporal expression patterns and analysis of gene-targeted knock-out mice. Defects are most pronounced in the combination double knock-out mice, suggesting that compensatory mechanisms exist for several of these family members. Furthermore, these CC defects range from mild hypoplasia to complete agenesis and Probst's bundle formation. Further analysis revealed that Probst's bundle formation may reflect aberrant glial formations and/or altered sensitivity of CC axons to other guidance cues. Our results support a significant role for ephrins and Eph receptors in CC development and may provide insight to possible mechanisms involved in axon midline crossing and human disorder
- …