193 research outputs found
Novel Techniques for Constraining Neutron-Capture Rates Relevant for r-Process Heavy-Element Nucleosynthesis
The rapid-neutron capture process ( process) is identified as the producer
of about 50\% of elements heavier than iron. This process requires an
astrophysical environment with an extremely high neutron flux over a short
amount of time ( seconds), creating very neutron-rich nuclei that are
subsequently transformed to stable nuclei via decay. One key
ingredient to large-scale -process reaction networks is radiative
neutron-capture () rates, for which there exist virtually no data for
extremely neutron-rich nuclei involved in the process. Due to the current
status of nuclear-reaction theory and our poor understanding of basic nuclear
properties such as level densities and average -decay strengths,
theoretically estimated () rates may vary by orders of magnitude and
represent a major source of uncertainty in any nuclear-reaction network
calculation of -process abundances. In this review, we discuss new
approaches to provide information on neutron-capture cross sections and
reaction rates relevant to the process. In particular, we focus on
indirect, experimental techniques to measure radiative neutron-capture rates.
While direct measurements are not available at present, but could possibly be
realized in the future, the indirect approaches present a first step towards
constraining neutron-capture rates of importance to the process.Comment: 62 pages, 24 figures, accepted for publication in Progress in
Particle and Nuclear Physic
Ground state magnetic dipole moment of 35K
The ground state magnetic moment of 35K has been measured using the technique
of nuclear magnetic resonance on beta-emitting nuclei. The short-lived 35K
nuclei were produced following the reaction of a 36Ar primary beam of energy
150 MeV/nucleon incident on a Be target. The spin polarization of the 35K
nuclei produced at 2 degrees relative to the normal primary beam axis was
confirmed. Together with the mirror nucleus 35S, the measurement represents the
heaviest T = 3/2 mirror pair for which the spin expectation value has been
obtained. A linear behavior of gp vs. gn has been demonstrated for the T = 3/2
known mirror moments and the slope and intercept are consistent with the
previous analysis of T = 1/2 mirror pairs.Comment: 14 pages, 5 figure
Novel technique for constraining r-process (n,) reaction rates
A novel technique has been developed, which will open exciting new
opportunities for studying the very neutron-rich nuclei involved in the
r-process. As a proof-of-principle, the -spectra from the -decay
of Ga have been measured with the SuN detector at the National
Superconducting Cyclotron Laboratory. The nuclear level density and
-ray strength function are extracted and used as input to
Hauser-Feshbach calculations. The present technique is shown to strongly
constrain the Ge()Ge cross section and reaction rate.Comment: 5 pages, 3 figure
Half-life and spin of 60Mn^g
A value of 0.28 +/- 0.02 s has been deduced for the half-life of the ground
state of 60Mn, in sharp contrast to the previously adopted value of 51 +/- 6 s.
Access to the low-spin 60Mn ground state was accomplished via beta decay of the
0+ 60Cr parent nuclide. New, low-energy states in 60Mn have been identified
from beta-delayed gamma-ray spectroscopy. The new, shorter half-life of 60Mn^g
is not suggestive of isospin forbidden beta decay, and new spin and parity
assignments of 1+ and 4+ have been adopted for the ground and isomeric
beta-decaying states, respectively, of 60Mn.Comment: 13 pages, 5 figures, Accepted for publication in Phys. Rev.
- …