117 research outputs found

    Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's disease (PD) is the most common movement disorder. Extrapyramidal motor symptoms stem from the degeneration of the dopaminergic pathways in patient brain. Current treatments for PD are symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Although the cause of PD remains unknown, several pathogenic factors have been identified, which cause dopaminergic neuron (DN) death in the substantia nigra (SN). These include oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity. Manipulation of these factors may allow the development of disease-modifying treatment strategies to slow neuronal death. Inhibition of DJ-1A, the <it>Drosophila </it>homologue of the familial PD gene DJ-1, leads to oxidative stress, mitochondrial dysfunction, and DN loss, making fly DJ-1A model an excellent <it>in vivo </it>system to test for compounds with therapeutic potential.</p> <p>Results</p> <p>In the present study, a <it>Drosophila </it>DJ-1A model of PD was used to test potential neuroprotective drugs. The drugs applied are the Chinese herb celastrol, the antibiotic minocycline, the bioenergetic amine coenzyme Q10 (coQ10), and the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]-quinoxaline (NBQX). All of these drugs target pathogenic processes implicated in PD, thus constitute mechanism-based treatment strategies. We show that celastrol and minocycline, both having antioxidant and anti-inflammatory properties, confer potent dopaminergic neuroprotection in <it>Drosophila </it>DJ-1A model, while coQ10 shows no protective effect. NBQX exerts differential effects on cell survival and brain dopamine content: it protects against DN loss but fails to restore brain dopamine level.</p> <p>Conclusion</p> <p>The present study further validates <it>Drosophila </it>as a valuable model for preclinical testing of drugs with therapeutic potential for neurodegenerative diseases. The lower cost and amenability to high throughput testing make <it>Drosophila </it>PD models effective <it>in vivo </it>tools for screening novel therapeutic compounds. If our findings can be further validated in mammalian PD models, they would implicate drugs combining antioxidant and anti-inflammatory properties as strong therapeutic candidates for mechanism-based PD treatment.</p

    Coordinate Regulation of Mature Dopaminergic Axon Morphology by Macroautophagy and the PTEN Signaling Pathway

    Get PDF
    Macroautophagy is a conserved mechanism for the bulk degradation of proteins and organelles. Pathological studies have implicated defective macroautophagy in neurodegeneration, but physiological functions of macroautophagy in adult neurons remain unclear. Here we show that Atg7, an essential macroautophagy component, regulates dopaminergic axon terminal morphology. Mature Atg7-deficient midbrain dopamine (DA) neurons harbored selectively enlarged axonal terminals. This contrasted with the phenotype of DA neurons deficient in Pten – a key negative regulator of the mTOR kinase signaling pathway and neuron size – that displayed enlarged soma but unaltered axon terminals. Surprisingly, concomitant deficiency of both Atg7 and Pten led to a dramatic enhancement of axon terminal enlargement relative to Atg7 deletion alone. Similar genetic interactions between Atg7 and Pten were observed in the context of DA turnover and DA-dependent locomotor behaviors. These data suggest a model for morphological regulation of mature dopaminergic axon terminals whereby the impact of mTOR pathway is suppressed by macroautophagy

    Comparison of BISAP, Ranson, MCTSI, and APACHE II in Predicting Severity and Prognoses of Hyperlipidemic Acute Pancreatitis in Chinese Patients

    Get PDF
    In recent years, with the developing of living standard, hyperlipidemia becomes the second major reason of acute pancreatitis. It is important to predict the severity and prognosis at early stage of hyperlipidemic acute pancreatitis (HLAP). We compared the BISAP, Ranson, MCTSI, and APACHE II scoring system in predicting MSAP and SAP, local complications, and mortality of HLAP. A total of 326 diagnosed hyperlipidemic acute pancreatitis patients from August 2006 to July 2015 were studied retrospectively. Our result showed that all four scoring systems can be used to predict the severity, local complications, and mortality of HLAP. Ranson did not have significant advantage in predicting severity and prognosis of HLAP compared to other three scoring systems. APACHE II was the best in predicting severity of HLAP, but it had shortcoming in predicting local complications. MCTSI had outstanding performance in predicting local complications, but it was poor in predicting severity and mortality. BISAP score had high accuracy in assessment of severity, local complications, and mortality of HLAP, but the accuracy still needs to be improved in the future

    Correlation of Body Mass Index and Waist-Hip Ratio with Severity and Complications of Hyperlipidemic Acute Pancreatitis in Chinese Patients

    Get PDF
    Hyperlipidemic acute pancreatitis (HLAP) is characterized by critical condition and high recurrence rate compared with non-HLAP. We conducted this study to investigate the value of body mass index and waist-hip ratio in predicting severity and local complications in HLAP. 96 patients with HLAP were categorized by body mass index and waist-hip ratio, respectively. According to the body mass index, they were divided into 3 groups, including normal weight, overweight, and obesity. According to the waist-hip ratio, they were divided into central obesity group and no central obesity group. The body mass index and waist-hip ratio were compared in severity, local complications, and systematic complications of HLAP, using chi-square test and Monte Carlo simulations. The body mass index and waist-hip ratio were correlated with the severity of acute pancreatitis (MAP, MSAP, and SAP), respiratory failure, and circulatory failure in HLAP (p<0.05), but not correlated with the local complications (walled-off necrosis, pancreatic abscess, and pancreatic pseudocyst), renal failure, and gastrointestinal bleeding.The body mass index and waist-hip ratio are valuable in predicting severity and complication in HLAP. We demonstrated that obese patients had an increased risk of developing more serious condition and more complications in HLAP

    Heteroatom-Induced Molecular Asymmetry Tunes Quantum Interference in Charge Transport through Single-Molecule Junctions

    Get PDF
    We studied the interplay between quantum interference (QI) and molecular asymmetry in charge transport through a single molecule. Eight compounds with five-membered core rings were synthesized, and their single-molecule conductances were characterized using the mechanically controllable break junction technique. It is found that the symmetric molecules are more conductive than their asymmetric isomers and that there is no statistically significant dependence on the aromaticity of the core. In contrast, we find experimental evidence of destructive QI in five-membered rings, which can be tuned by implanting different heteroatoms into the core ring. Our findings are rationalized by the presence of antiresonance features in the transmission curves calculated using nonequilibrium Green’s functions. This novel mechanism for modulating QI effects in charge transport via tuning of molecular asymmetry will lead to promising applications in the design of single-molecule devices

    Structural Basis of Competitive Recognition of p53 and MDM2 by HAUSP/USP7: Implications for the Regulation of the p53–MDM2 Pathway

    Get PDF
    Herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7), a deubiquitylating enzyme of the ubiquitin-specific processing protease family, specifically deubiquitylates both p53 and MDM2, hence playing an important yet enigmatic role in the p53–MDM2 pathway. Here we demonstrate that both p53 and MDM2 specifically recognize the N-terminal tumor necrosis factor–receptor associated factor (TRAF)–like domain of HAUSP in a mutually exclusive manner. HAUSP preferentially forms a stable HAUSP–MDM2 complex even in the presence of excess p53. The HAUSP-binding elements were mapped to a peptide fragment in the carboxy-terminus of p53 and to a short-peptide region preceding the acidic domain of MDM2. The crystal structures of the HAUSP TRAF-like domain in complex with p53 and MDM2 peptides, determined at 2.3-Å and 1.7-Å resolutions, respectively, reveal that the MDM2 peptide recognizes the same surface groove in HAUSP as that recognized by p53 but mediates more extensive interactions. Structural comparison led to the identification of a consensus peptide-recognition sequence by HAUSP. These results, together with the structure of a combined substrate-binding-and-deubiquitylation domain of HAUSP, provide important insights into regulation of the p53–MDM2 pathway by HAUSP

    Concordant Signaling Pathways Produced by Pesticide Exposure in Mice Correspond to Pathways Identified in Human Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disease in which the etiology of 90 percent of the patients is unknown. Pesticide exposure is a major risk factor for PD, and paraquat (PQ), pyridaben (PY) and maneb (MN) are amongst the most widely used pesticides. We studied mRNA expression using transcriptome sequencing (RNA-Seq) in the ventral midbrain (VMB) and striatum (STR) of PQ, PY and paraquat+maneb (MNPQ) treated mice, followed by pathway analysis. We found concordance of signaling pathways between the three pesticide models in both the VMB and STR as well as concordance in these two brain areas. The concordant signaling pathways with relevance to PD pathogenesis were e.g. axonal guidance signaling, Wnt/β-catenin signaling, as well as pathways not previously linked to PD, e.g. basal cell carcinoma, human embryonic stem cell pluripotency and role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis. Human PD pathways previously identified by expression analysis, concordant with VMB pathways identified in our study were axonal guidance signaling, Wnt/β-catenin signaling, IL-6 signaling, ephrin receptor signaling, TGF-β signaling, PPAR signaling and G-protein coupled receptor signaling. Human PD pathways concordant with the STR pathways in our study were Wnt/β-catenin signaling, axonal guidance signaling and G-protein coupled receptor signaling. Peroxisome proliferator activated receptor delta (Ppard) and G-Protein Coupled Receptors (GPCRs) were common genes in VMB and STR identified by network analysis. In conclusion, the pesticides PQ, PY and MNPQ elicit common signaling pathways in the VMB and STR in mice, which are concordant with known signaling pathways identified in human PD, suggesting that these pathways contribute to the pathogenesis of idiopathic PD. The analysis of these networks and pathways may therefore lead to improved understanding of disease pathogenesis, and potential novel therapeutic targets
    corecore