14 research outputs found

    Galvanotactic phenomenon induced by non-contact electrostatic field: Investigation in a scratch assay

    No full text
    Non-contact galvanotaxis as a way to drive the cells migration could be a promising tool for a variety of biomedical applications, such as wound healing control, avoiding the interaction between electrodes and cell cultures. To this regard, the efficacy of this electrical stimulus application has to be deeper studied to control physiological migratory phenomena in a remote way.Aim of this work is to provide an experimental investigation on the mobility of cells exposed to a static electric field in a "noncontact" mode, supported by a suitable modeling of the electric field distribution inside the experimental setup. In particular, scratch assays have been carried out placing the electrodes outside the cells medium support and changing the cells holder to study more than one configuration.Clinical Relevance— In this study the in vitro experiments on the non-contact galvanotaxis, together with the numerical simulations of the exposure setup, provide a way to investigate the effects that could affect an electrically drive cell migration

    Planning sine waves electroporation on liposomes for drug delivery application

    No full text
    Radiofrequency (RF) signals as a way to remotely control smart drug delivery nanocarriers represent a promising tool to overcome traditional therapeutic issues, such as overdosing therapeutic agents with a reduced efficacy and related side effects on healthy tissues, in order to obtain a targeted release near diseased cells. Aim of this work is to provide a deep investigation on the possible effect of sine wave RF signals, of 100 kHz and 10 MHz, applied to a non-uniform random distribution of 142 liposomes, as a realistic model of a biocompatible drug delivery suspension, to study electroporation mechanisms occurring during exposure

    Proof-of-concept of electrical activation of liposome nanocarriers: from dry to wet experiments

    No full text
    The increasing interest toward biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes of liposomes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale. Aim of this work is to give an experimental validation of the feasibility to control the release from liposome vesicles, using nanosecond pulsed electric fields characterized by a 10 ns duration and intensity in the order of MV/m. The results are supported by multiphysics simulations which consider the coupling of three physics (electromagnetics, thermal and pore kinetics) in order to explain the occurring physical interactions at the microscopic level and provide useful information on the characteristics of the train of pulses needed to obtain quantitative results in terms of liposome electropermeabilization. Finally, a complete characterization of the exposure system is also provided to support the reliability and validity of the study

    A microdosimetric study at the cellular and intracellular level using a 3D realistic cell model

    No full text
    International audienceRadio frequency electromagnetic fields (RF EMFs) are increasingly used in emerging telecommunication technologies such as wireless power transfer (WPT), 5G millimetre-wave (mmWave) technologies, with a public concern regarding their environmental safety. Microdosimetric investigations provide an insight into the local distribution of the electric field induced at the level of cellular and sub-cellular structures exposed to RF EMFs. The aim of this work is to provide a quantitative evaluation of the EMFs in cells, using a 3D microdosimetric model with a realistic shape of the cells and intracellular organelles (i.e. endoplasmic reticulum and nucleus). Results are presented in terms of local electric field distribution, local volumetric power loss density distribution and transmembrane potential induced on the cellular and sub-cellular membranes, with a focus on the comparison between EMFs exposure at 700 MHz, 3.7 GHz and 60 GHz

    Feasibility of drug delivery mediated by ultra-short and intense pulsed electric fields

    No full text
    The increasing interest towards biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. Common examples of electro-sensitive materials include phospholipids that can be used to design nano-sized vesicles suitable for external electric actuation. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale. Aim of this work is to give an experimental validation of the feasibility of controlling drug release from liposomes mediated by nanosecond pulsed electric fields

    Patient's Clinical Presentation and CPPopt Availability: Any Association?

    Get PDF
    BACKGROUND: The 'optimal' CPP (CPPopt) concept is based on the vascular pressure reactivity index (PRx). The feasibility and effectiveness of CPPopt guided therapy in severe traumatic brain injury (TBI) patients is currently being investigated prospectively in the COGiTATE trial. At the moment there is no clear evidence that certain admission and treatment characteristics are associated with CPPopt availability (yield). OBJECTIVE: To test the relation between patients' admission and treatment characteristics and the average CPPopt yield. METHODS: Retrospective analysis of 230 patients from the CENTER-TBI high-resolution database with intracranial pressure (ICP) measured using an intraparenchymal probe. CPPopt was calculated using the algorithm set for the COGiTATE study. CPPopt yield was defined as the percentage of CPP monitored time (%) when CPPopt is available. The variables in the statistical model included age, admission Glasgow Coma Scale (GCS), gender, pupil response, hypoxia and hypotension at the scene, Marshall computed tomography (CT) score, decompressive craniectomy, injury severity score score and 24-h therapeutic intensity level (TIL) score. RESULTS: The median CPPopt yield was 80.7% (interquartile range 70.9-87.4%). None of the selected variables showed a significant statistical correlation with the CPPopt yield. CONCLUSION: In this retrospective multicenter study, none of the selected admission and treatment variables were related to the CPPopt yield

    Optimal Cerebral Perfusion Pressure Assessed with a Multi-Window Weighted Approach Adapted for Prospective Use: A Validation Study.

    Get PDF
    BACKGROUND: Pressure reactivity index (PRx)-cerebral perfusion pressure (CPP) relationships over a given time period can be used to detect a value of CPP at which PRx shows the best autoregulation (optimal CPP, or CPPopt). Algorithms for continuous assessment of CPPopt in traumatic brain injury (TBI) patients reached the desired high yield with a multi-window approach (CPPopt_MA). However, the calculations were tested on retrospective manually cleaned datasets. Moreover, CPPopt false-positive values can be generated from non-physiological variations of intracranial pressure (ICP) and arterial blood pressure (ABP). Therefore, the algorithm robustness was improved, making it suitable for prospective bedside application (COGiTATE trial). OBJECTIVE: To validate the CPPopt revised algorithm in a large single-centre retrospective cohort of TBI patients. METHODS: 840 TBI patients were included. CPPopt yield, stability and ability to discriminate outcome groups were compared to CPPopt_MA and the Brain Trauma Foundation (BTF) guideline reference. RESULTS: CPPopt yield was lower than CPPopt_MA yield (85% and 90%, p < 0.001), but, importantly, with increased stability (p < 0.0001). The ∆(CPP-CPPopt) could distinguish the mortality and survival outcome (t = -6.7, p < 0.0001) with a statistical significance higher than the ∆CPP calculated with the guideline reference (CPP-60) (t = -4.5, p < 0.0001). CONCLUSION: This study validates, on a large cohort of patients, the new algorithm proposed for prospective use of CPPopt as a CPP target at bedside
    corecore