7,094 research outputs found

    Application of Time-Fractional Order Bloch Equation in Magnetic Resonance Fingerprinting

    Full text link
    Magnetic resonance fingerprinting (MRF) is one novel fast quantitative imaging framework for simultaneous quantification of multiple parameters with pseudo-randomized acquisition patterns. The accuracy of the resulting multi-parameters is very important for clinical applications. In this paper, we derived signal evolutions from the anomalous relaxation using a fractional calculus. More specifically, we utilized time-fractional order extension of the Bloch equations to generate dictionary to provide more complex system descriptions for MRF applications. The representative results of phantom experiments demonstrated the good accuracy performance when applying the time-fractional order Bloch equations to generate dictionary entries in the MRF framework. The utility of the proposed method is also validated by in-vivo study.Comment: Accepted at 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019

    Dry magnetic separation technology for the recovery of iron minerals in fine-grained steel slag

    Get PDF
    Using the MagNet software package, a permanent magnetic circuit was simulated and a sectorially-spliced magnetic system was designed. Consequently, a new roller permanent magnetic separator with different magnetic field intensities in each roller was developed. The modular structural design allows fine-grained minerals with different magnetic susceptibility to be separated in one pass, according to their different processing characteristic. Steel slag, selected from a factory, was crushed, ground and sieved into different particle size ranges for the single-factor magnetic separation experiments. It was determined that the optimum value ranges for the particle size, magnetic separation distance and rotating frequency were 0.15 mm-0.3 mm, 10 mm-12 mm, 40 Hz~60Hz, respectively; using the chosen parameter values of 0.2mm, 11mm, and 40Hz, the concentrate recovery and concentrate grade of the new separation technology reached up to 52.78% and 64.74%, in comparisson with the existing technology. Thus, it was demonstrated that the self-developed separation technology has the potential to improve the iron recovery of the fine-grained steel slag
    corecore