60 research outputs found

    Cpt-Cgmp Is A New Ligand Of Epithelial Sodium Channels

    Get PDF
    Epithelial sodium channels (ENaC) are localized at the apical membrane of the epithelium, and are responsible for salt and fluid reabsorption. Renal ENaC takes up salt, thereby controlling salt content in serum. Loss-of-function ENaC mutations lead to low blood pressure due to salt-wasting, while gain-of-function mutations cause impaired sodium excretion and subsequent hypertension as well as hypokalemia. ENaC activity is regulated by intracellular and extracellular signals, including hormones, neurotransmitters, protein kinases, and small compounds. Cyclic nucleotides are broadly involved in stimulating protein kinase A and protein kinase G signaling pathways, and, surprisingly, also appear to have a role in regulating ENaC. Increasing evidence suggests that the cGMP analog, CPT-cGMP, activates αβγ-ENaC activity reversibly through an extracellular pathway in a dose-dependent manner. Furthermore, the parachlorophenylthio moiety and ribose 2’-hydroxy group of CPT-cGMP are essential for facilitating the opening of ENaC channels by this compound. Serving as an extracellular ligand, CPT-cGMP eliminates sodium self-inhibition, which is a novel mechanism for stimulating salt reabsorption in parallel to the traditional NO/cGMP/PKG signal pathway. In conclusion, ENaC may be a druggable target for CPT-cGMP, leading to treatments for kidney malfunctions in salt reabsorption

    PI3 K/Akt/mTOR-mediated translational control regulates proliferation and differentiation of lineage-restricted RoSH stem cell lines

    Get PDF
    Background: We have previously derived highly similar lineage-restricted stem cell lines, RoSH and E-RoSH cell lines from mouse embryos and CD9hi SSEA-1- differentiated mouse embryonic stem cells, respectively. These cell lines are not pluripotent and differentiate readily into endothelial cells in vitro and in vivo. Results: We investigated the signaling pathway that maintains proliferation of these cells in an undifferentiated state, and demonstrate that PI3 K/Akt/mTOR, but not Raf/MEK/Erk, signaling in these cells was active during proliferation and was downregulated during endothelial differentiation. Inhibition of PI3 K/Akt/mTOR signaling, but not Raf/MEK/Erk, reduced proliferation and induced expression of endothelial specific proteins. During differentiation or inhibition of PI3 K/Akt/mTOR signaling, cyclinD2 transcript abundance in ribosome-enriched RNA but not in total RNA was reduced with a corresponding reduction in protein level. In contrast, transcript abundance of endothelial-specific genes e.g. Kdr, Tek and Pdgfrα in ribosome-enriched RNA fraction was not reduced and their protein levels were increased. Together these observations suggested that translational control mediated by PI3K/Akt/mTOR signaling was critical in regulating proliferation and endothelial differentiation of lineage-restricted RoSH-like stem cell lines. Conclusion: This study highlights translation regulation as a critical regulatory mechanism during proliferation and differentiation in stem cells

    Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction

    Get PDF
    The strong relationship between cigarette smoking and cardiovascular disease (CVD) has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs) are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs) or bone marrow (BM-MSCs) might alleviate cigarette smoke (CS)-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA) as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and dysfunction. Thus, iPSC-MSCs may be a promising candidate in cell-based therapy to prevent cardiac complications in smokers

    Calcium Homeostasis in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    Get PDF
    Rationale: Cardiomyocytes generated from human induced pluripotent stem cells (hiPSCs) are suggested as the most promising candidate to replenish cardiomyocyte loss in regenerative medicine. Little is known about their calcium homeostasis, the key process underlying excitation-contraction coupling. Objective: We investigated the calcium handling properties of hiPSC-derived cardiomyocytes and compared with those from human embryonic stem cells (hESCs). Methods and Results: We differentiated cardiomyocytes from hiPSCs (IMR90 and KS1) and hESCs (H7 and HES3) with established protocols. Beating outgrowths from embryoid bodies were typically observed 2 weeks after induction. Cells in these outgrowths were stained positively for tropomyosin and sarcomeric alpha-actinin. Reverse-transcription polymerase chain reaction studies demonstrated the expressions of cardiac-specific markers in both hiPSC- and hESC-derived cardiomyocytes. Calcium handling properties of 20-day-old hiPSC- and hESC-derived cardiomyocytes were investigated using fluorescence confocal microscopy. Compared with hESC-derived cardiomyocytes, spontaneous calcium transients from both lines of hiPSC-derived cardiomyocytes were of significantly smaller amplitude and with slower maximal upstroke velocity. Better caffeine-induced calcium handling kinetics in hESC-CMs indicates a higher sacroplasmic recticulum calcium store. Furthermore, in contrast with hESC-derived cardiomyocytes, ryanodine did not reduce the amplitudes, maximal upstroke and decay velocity of calcium transients of hiPSC-derived cardiomyocytes. In addition, spatial inhomogeneity in temporal properties of calcium transients across the width of cardiomyocytes was more pronounced in hiPSC-derived cardiomyocytes than their hESC counterpart as revealed line-scan calcium imaging. Expressions of the key calcium-handling proteins including ryanodine recptor-2 (RyR2), sacroplasmic recticulum calcium-ATPase (SERCA), junction (Jun) and triadin (TRDN), were significantly lower in hiPSC than in hESCs. Conclusions: The results indicate the calcium handling properties of hiPSC-derived cardiomyocytes are relatively immature to hESC counterparts. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Promises of stem cell therapy for retinal degenerative diseases

    Get PDF
    With the development of stem cell technology, stem cell-based therapy for retinal degeneration has been proposed to restore the visual function. Many animal studies and some clinical trials have shown encouraging results of stem cell-based therapy in retinal degenerative diseases. While stem cell-based therapy is a promising strategy to replace damaged retinal cells and ultimately cure retinal degeneration, there are several important challenges which need to be overcome before stem cell technology can be applied widely in clinical settings. In this review, different types of donor cell origins used in retinal treatments, potential target cell types for therapy, methods of stem cell delivery to the eye, assessments of potential risks in stem cell therapy, as well as future developments of retinal stem cells therapy, will be discussed

    Establishing Clonal Cell Lines with Endothelial-Like Potential from CD9(hi), SSEA-1(−) Cells in Embryonic Stem Cell-Derived Embryoid Bodies

    Get PDF
    BACKGROUND: Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. METHODOLOGY/PRINCIPAL FINDINGS: We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r(2) = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9(hi), SSEA-1(−) while ESCs are CD9(lo), SSEA-1(+). Isolation of CD9(hi), SSEA-1(−) cells that constituted 1%–10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r(2) = 0.95) and a propensity to differentiate into endothelial-like cells. CONCLUSIONS: By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs

    Thrombopoietin Protects Cardiomyocytes from Iron-Overload Induced Oxidative Stress and Mitochondrial Injury

    Get PDF
    Background/Aims: Thalassaemia accompanied with iron-overload is common in Hong Kong. Iron-overload induced cardiomyopathy is the commonest cause of morbidity and mortality in patients with β-thalassaemia. Chronic iron-overload due to blood transfusion can cause cardiac failure. Decreased antioxidant defence and increased ROS production may lead to oxidative stress and cell injury. Iron-overload may lead to heart tissue damage through lipid peroxidation in response to oxidative stress, and a great diversity of toxic aldehydes are formed when lipid hydroperoxides break down in heart and plasma. Methods: Iron entry into embryonic heart H9C2 cells was determined by calcein assay using a fluorometer. Reactive oxygen species (ROS) production in cells treated with FeCl3 or thrombopoietin (TPO) was monitored by using the fluorescent probe H2DCFDA. Changes in mitochondrial membrane potential of H9C2 cells were quantified by using flow cytometry. Results: We demonstrated that iron induced oxidative stress and apoptosis in cardiomyocytes, and that iron increased ROS production and reduced cell viability in a dose-dependent manner. Iron treatment increased the proportion of cells with JC-1 monomers, indicating a trend of drop in the mitochondrial membrane potential. TPO exerted a cardio-protective effect on iron-induced apoptosis. Conclusions: These findings suggest that iron-overload leads to the generation of ROS and further induces apoptosis in cardiomyocytes via mitochondrial pathways. TPO might exert a protective effect on iron-overload induced apoptosis via inhibiting oxidative stress and suppressing the mitochondrial pathways in cardiomyocytes

    [en] PASSAGES OF TESTIMONIOS IN LATIN AMERICA: CHE GUEVARA, RIGOBERTA MENCHÚ E NUNCA MÁS

    Get PDF
    There is a growing interest in the clinical application for stem cell as a novel therapy for treatment of acute myocardial infarction and chronic myocardial ischaemia. The initial premise is the transplanted exogenous stem cells can engraft and integrate with host myocardium for cardiac regeneration. However, recent experimental studies suggest that multiple mechanisms, including remodelling of extracellular matrix, enhancement of neovascularisation and recruitment of endogenous stem cells are more likely to contribute to the beneficial effects of stem cell therapy that direct trans-differentiation of stem cells into functional myocardium. Among different potential cell sources, bone marrow-derived cells and skeletal myoblasts have been tested in pilot clinical trials. Phase I/II randomised controlled clinical trials suggest that intracoronary or intramyocardial injection of bone marrow-derived cells may be safe and feasible strategies for treatment of acute myocardial infarction as well as chronic myocardial ischaemia. In addition, these studies show a modest, but significant improvement in left ventricular ejection fraction and clinical status of patients after cell transplantation. Nevertheless, most of these studies included a relatively small sample size (<200) and short duration of follow-up (<6 months), and the clinical efficacy of stem cell therapy need to be confirmed by future clinical trials. Furthermore, the optimal timing, cell types and mode of delivery need to be addressed, and strategies to improve cell survival and engraftment should also be developed to overcome the potential hurdles related to cell-based therapy. © Schattauer 2010.published_or_final_versio

    Mitochondrial Cardiomyopathy: Molecular Epidemiology, Diagnosis, Models, and Therapeutic Management

    No full text
    Mitochondrial cardiomyopathy (MCM) is characterized by abnormal heart-muscle structure and function, caused by mutations in the nuclear genome or mitochondrial DNA. The heterogeneity of gene mutations and various clinical presentations in patients with cardiomyopathy make its diagnosis, molecular mechanism, and therapeutics great challenges. This review describes the molecular epidemiology of MCM and its clinical features, reviews the promising diagnostic tests applied for mitochondrial diseases and cardiomyopathies, and details the animal and cellular models used for modeling cardiomyopathy and to investigate disease pathogenesis in a controlled in vitro environment. It also discusses the emerging therapeutics tested in pre-clinical and clinical studies of cardiac regeneration
    corecore