16,266 research outputs found

    Research on Oil Circulation Rate of CO2 Inverter Rotary Compressors

    Get PDF
    The oil circulation rate(OCR) of a CO2 inverter rotary compressor is higher than expected. The computational fluid dynamics(CFD) method is used to build a flow field simulation model of the compressor. Boundary conditions are determined according to the real running conditions of the compressor, involving the pressure, the temperature, the mass flow rate and other necessary parameters. There are four paths for refrigeration gas and oil flowing across: the motor rotor channel, the air gap between the motor rotor and the motor stator, the winding gap and the motor stator core cut. The CO2 mass flow rates of these four paths are obtained and compared. The pressure field in the compressor is obtained and analyzed, which determines the gas and oil flow pattern and path. The velocity is also investigated. The research shows: the CO2 mass flow rate through motor rotor channel and winding gap have a great influence on the OCR of CO2 inverter rotary compressors. The simulation result agrees well with the test result

    A Novel Euler's Elastica based Segmentation Approach for Noisy Images via using the Progressive Hedging Algorithm

    Get PDF
    Euler's Elastica based unsupervised segmentation models have strong capability of completing the missing boundaries for existing objects in a clean image, but they are not working well for noisy images. This paper aims to establish a Euler's Elastica based approach that properly deals with random noises to improve the segmentation performance for noisy images. We solve the corresponding optimization problem via using the progressive hedging algorithm (PHA) with a step length suggested by the alternating direction method of multipliers (ADMM). Technically, all the simplified convex versions of the subproblems derived from the major framework of PHA can be obtained by using the curvature weighted approach and the convex relaxation method. Then an alternating optimization strategy is applied with the merits of using some powerful accelerating techniques including the fast Fourier transform (FFT) and generalized soft threshold formulas. Extensive experiments have been conducted on both synthetic and real images, which validated some significant gains of the proposed segmentation models and demonstrated the advantages of the developed algorithm

    Effects of motion-induced aerodynamic force on the performance of active buffeting control

    Get PDF
    During buffeting control of an aircraft, there consequently is a motion-induced aerodynamic force. However, it is not yet clear whether this additional force must be considered in design of control law. In this paper, to hopefully answer this interesting question, effects of the motion-induced aerodynamic force on the active buffeting control during control law design are studied. The macro fiber composite (MFC) actuator is modeled by employing the load simulation method, and the motion-induced unsteady aerodynamic forces are computed by the doublet-lattice method. Two different controllers, i.e. one with the motion-induced aerodynamic force and another without it, are simultaneously designed based on the linear quadratic Gaussian (LQG) control method. And, two corresponding models are respectively developed. Then, the control effects of the two models are compared and the physical mechanisms are discussed. From our simulation results it is found that the motion-induced aerodynamic forces do influence the buffeting responses depending on airflow velocity. The differences of the control effects of the two models are smaller at lower airflow velocity below the flutter velocity, however with the increase of the airflow velocity the control effect of the model considering the motion-induced aerodynamic force is much better. The larger the velocity is, the more significant the differences are. Finally, the energy dissipation of the motion-induced aerodynamic force is examined and found to be a main factor influencing the differences of the two models

    The Study of Highway for Lifelong Multi-Agent Path Finding

    Full text link
    In modern fulfillment warehouses, agents traverse the map to complete endless tasks that arrive on the fly, which is formulated as a lifelong Multi-Agent Path Finding (lifelong MAPF) problem. The goal of tackling this challenging problem is to find the path for each agent in a finite runtime while maximizing the throughput. However, existing methods encounter exponential growth of runtime and undesirable phenomena of deadlocks and rerouting as the map size or agent density grows. To address these challenges in lifelong MAPF, we explore the idea of highways mainly studied for one-shot MAPF (i.e., finding paths at once beforehand), which reduces the complexity of the problem by encouraging agents to move in the same direction. We utilize two methods to incorporate the highway idea into the lifelong MAPF framework and discuss the properties that minimize the existing problems of deadlocks and rerouting. The experimental results demonstrate that the runtime is considerably reduced and the decay of throughput is gradually insignificant as the map size enlarges under the settings of the highway. Furthermore, when the density of agents increases, the phenomena of deadlocks and rerouting are significantly reduced by leveraging the highway

    Spin-flip reflection at the normal metal-spin superconductor interface

    Full text link
    We study spin transport through a normal metal-spin superconductor junction. A spin-flip reflection is demonstrated at the interface, where a spin-up electron incident from the normal metal can be reflected as a spin-down electron and the spin 2Ă—â„Ź/22\times \hbar/2 will be injected into the spin superconductor. When the (spin) voltage is smaller than the gap of the spin superconductor, the spin-flip reflection determines the transport properties of the junction. We consider both graphene-based (linear-dispersion-relation) and quadratic-dispersion-relation normal metal-spin superconductor junctions in detail. For the two-dimensional graphene-based junction, the spin-flip reflected electron can be along the specular direction (retro-direction) when the incident and reflected electron locates in the same band (different bands). A perfect spin-flip reflection can occur when the incident electron is normal to the interface, and the reflection coefficient is slightly suppressed for the oblique incident case. As a comparison, for the one-dimensional quadratic-dispersion-relation junction, the spin-flip reflection coefficient can reach 1 at certain incident energies. In addition, both the charge current and the spin current under a charge (spin) voltage are studied. The spin conductance is proportional to the spin-flip reflection coefficient when the spin voltage is less than the gap of the spin superconductor. These results will help us get a better understanding of spin transport through the normal metal-spin superconductor junction.Comment: 11 pages, 9 figure
    • …
    corecore