612 research outputs found

    ํŽธ์ธก ์„ ์ฒœ์„ฑ ๊ทผ์œ„ ์š”์ฒ™๊ณจ ๊ณจ๊ฒฐํ•ฉ ํ™˜์ž์—์„œ ์™„๊ด€์ ˆ์˜ ๋ณด์ƒ ํšŒ์ „ ์šด๋™์— ๋Œ€ํ•œ 3์ฐจ์› ์šด๋™ ๋ถ„์„ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ, 2021. 2. ๋ฐฑ๊ตฌํ˜„.Objectives: The aim of the present study was to investigate compensatory rotational movements of the wrist using a valid and reliable three-dimensional (3D) motion analysis technique in patients with unilateral proximal congenital radioulnar synostosis (CRUS). Background: Although forearm rotation is usually limited in patients with proximal CRUS, compensatory motions of the adjacent joints enable activities of daily living (ADL) in most patients. There have been a few reports on study of the compensatory rotational movement around the wrist in patients with proximal CRUS. Increased rotational movements of the wrist to compensate congenital fusion was not measured objectively. Patients and methods: Twenty patients (six females, 14 males; mean age = 6-32 years) in whom unilateral proximal CRUS was diagnosed but not operated on were enrolled this study. Patients were then categorized into two groups: Group I included five patients younger than 10 years and Group II included 15 patients older than 10 years. Eighteen light-reflective skin markers were placed on both upper limbs, and both distal forearms were fixed using a U-shaped device to minimize forearm rotation. Each patient grasped the handle of an instrument that used a goniometer to measure wrist rotation; maximal passive pronation and supination angles of the wrist were both measured in this manner and via 3D motion analysis. Results: There was a significant correlation between the measurements using the goniometer and 3D motion analysis (r = 0.985, p < 0.001). The test-retest reliability of the 3D motion analysis was acceptable on both affected side (ICC = 0.992) and the contralateral normal side (ICC = 0.997) with low measurement error (1.3ยฐ and 0.8ยฐ, respectively). Although there was no significant difference in the range of wrist rotation between the affected and the contralateral sides in Group I (p = 0.686), a significant difference was observed in Group II (p = 0.001). Conclusions: The 3D motion analysis technique seems to be a valid and reliable method to measure the rotation of the wrist joint. Patients with unilateral proximal CRUS older than 10 years of age may develop rotational hypermobility of the wrist joint compared to the contralateral normal side as a compensatory phenomenon.๋ชฉ์ : ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ํŽธ์ธก ์„ ์ฒœ์„ฑ ์š”์ฒ™๊ณจ ๊ณจ๊ฒฐํ•ฉ (CRUS) ํ™˜์ž์—์„œ ์œ ํšจํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” 3์ฐจ์› (3D) ์šด๋™ ๋ถ„์„ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์†๋ชฉ ํšŒ์ „ ์šด๋™์„ ์ •๋Ÿ‰์ ์œผ๋กœ ์ธก์ •ํ•˜๊ณ ์ž ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋ฐฐ๊ฒฝ: ๊ทผ์œ„ CRUS์€ ์š”๊ณจ๊ณผ ์ฒ™๊ณจ ์‚ฌ์ด์˜ ์–ด๋Š ๋ถ€๋ถ„์—์„œ๋“ ์ง€ ๋ฐœ์ƒํ•˜๋ฉฐ ์ฃผ๋กœ ๊ทผ์œ„ ์š”์ฒ™ ๊ด€์ ˆ์— ๋ฐœ์ƒํ•˜๋Š” ๋น„๊ต์  ๋“œ๋ฌธ ์ƒ์ง€์˜ ์„ ์ฒœ์„ฑ ์งˆํ™˜์ด๋‹ค. ์ž„์ƒ์ ์œผ๋กœ๋Š” ์ „์™„๋ถ€์˜ ํšŒ์ „ ์žฅ์• ๋ฅผ ์ผ์œผํ‚ค๋ฉฐ ์ฃผ๋กœ๋Š” ํšŒ๋‚ด์ „ ์ƒํƒœ๋กœ ๊ณ ์ •๋˜์–ด ์žˆ์œผ๋ฏ€๋กœ ํŠนํžˆ ์–‘์ธก ์„ ์ฒœ์„ฑ ์š”์ฒ™๊ณจ ๊ณจ๊ฒฐํ•ฉ ํ™˜์ž๋“ค์˜ ์ผ์ƒ์ƒํ™œ ํ™œ๋™์— ์ƒ๋‹นํ•œ ๋ถˆํŽธ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ํŽธ์ธก CRUS ํ™˜์ž๋“ค์€ ์ผ์ƒ์ƒํ™œ ํ™œ๋™์—์„œ ํ™˜์ธก ์–ด๊นจ์™€ ์†๋ชฉ์˜ ๋ณด์ƒ ์šด๋™์œผ๋กœ ์ƒํ™œ์— ํฐ ์ง€์žฅ์ด ์—†์–ด ์ž„์ƒ์—์„œ ๋Š˜ ๋Šฆ๊ฒŒ ๋ฐœ๊ฒฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ์งˆํ™˜์˜ ์น˜๋ฃŒ๋ฐฉ๋ฒ•๋„ ํ˜„์žฌ ๋‹ค์–‘ํ•œ ์ˆ˜์ˆ ๋ฐฉ๋ฒ•๋“ค์ด ์‹œ๋„๋˜๊ณ  ์žˆ์ง€๋งŒ ๋งŒ์กฑํ•œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์€ ์น˜๋ฃŒ๋ฒ•์ด ์ œ์‹œ๋˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ๋ฐฉ๋ฒ• ๋ฐ ๊ฒฐ๊ณผ: ํŽธ์ธก ๊ทผ์œ„ CRUS ์ง„๋‹จ์„ ๋ฐ›๊ณ  ์ˆ˜์ˆ ์„ ์‹œํ–‰ํ•˜์ง€ ์•Š์€ 20๋ช…์˜ ํ™˜์ž๋ฅผ ๋ชจ์ง‘ํ•˜์˜€๊ณ  ๊ทธ์ค‘ 10์„ธ ๋ฏธ๋งŒ์˜ ํ™˜์ž 5๋ช… (๊ทธ๋ฃน I) ๊ณผ 10์„ธ ์ด์ƒ ํ™˜์ž 15๋ช… (๊ทธ๋ฃน II)์˜ ๋‘ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋‰˜์—ˆ๋‹ค. 18๊ฐœ์˜ ํ”ผ๋ถ€ ๋งˆ์ปค๋ฅผ ์–‘์ชฝ ์ƒ์ง€ ํ•ด๋ถ€ํ•™์  ์œ„์น˜์— ๋ถ€์ฐฉํ•˜๊ณ  ์›์œ„ ํŒ”๋š์„ ๊ณ ์ •ํ•˜์—ฌ ํŒ”๋š์˜ ํšŒ์ „์„ ์ตœ์†Œํ™” ํ•˜์˜€๋‹ค. ๊ฐ ํ™˜์ž๋Š” ์™„๊ด€์ ˆ์˜ ์ตœ๋Œ€ ํšŒ๋‚ด์ „๊ณผ ํšŒ์™ธ์ „ ๋ฒ”์œ„๋ฅผ ๊ฐ๋„๊ณ„์™€ 3D ์šด๋™ ๋ถ„์„์„ ํ†ตํ•ด ๊ฐ๊ฐ ์ธก์ •ํ•˜์˜€๋‹ค. ๊ฐ๋„๊ณ„๋ฅผ ์‚ฌ์šฉํ•œ ์ธก์ •๊ณผ 3D ์šด๋™ ๋ถ„์„ ์‚ฌ์ด์—๋Š” ์œ ์˜ํ•œ ์ƒ๊ด€ ๊ด€๊ณ„๊ฐ€ ์žˆ๋‹ค (r = 0.985, p < 0.001). 3D ์šด๋™ ๋ถ„์„์˜ ํ…Œ์ŠคํŠธ-์žฌํ…Œ์ŠคํŠธ ์‹ ๋ขฐ๋„๋Š” ๋งค์šฐ ์šฐ์ˆ˜ ํ•˜๋ฉฐ (0.992, 0.997) ์ธก์ • ์˜ค๋ฅ˜๊ฐ€ ๋‚ฎ์•˜๋‹ค (1.3ยฐ, 0.8ยฐ). ๊ทธ๋ฃน I ํ™˜์ž๋“ค์—์„œ๋Š” ํ™˜์ธก๊ณผ ์ •์ƒ์ธก์˜ ์™„๊ด€์ ˆ์˜ ํšŒ์ „ ๋ฒ”์œ„์— ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ์—†์—ˆ์ง€๋งŒ (p = 0.686), ๊ทธ๋ฃน II ํ™˜์ž๋“ค์—์„œ๋Š” ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค (p = 0.001). ๊ฒฐ๋ก : 3D ์šด๋™ ๋ถ„์„ ๋ฐฉ๋ฒ•์€ ์™„๊ด€์ ˆ์˜ ํšŒ์ „์„ ์ •ํ™•ํ•˜๊ฒŒ ์ธก์ •ํ•˜๋Š” ์œ ํšจํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด๋ฉฐ 10์„ธ ์ด์ƒ์˜ ํŽธ์ธก ๊ทผ์œ„ CRUS ํ™˜์ž์—์„œ ํ™˜์ธก์˜ ์™„๊ด€์ ˆ ํšŒ์ „ ๋ฒ”์œ„๊ฐ€ ์ •์ƒ์ธก ๋ณด๋‹ค ๋” ๋งŽ๋‹ค๋Š” ์†Œ๊ฒฌ์ด ๊ด€์ฐฐ ๋˜์—ˆ๋‹ค.Table of Contents Chapter 1. Introductionยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท1 1.1 Study Backgroundยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท1 1.2 Purpose of Researchยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท2 Chapter 2. Patients and methodsยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท3 2.1 patientsยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท3 2.2 Experimental setupยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท4 2.3 The upper limb modelยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท5 2.4 Motion capture and data analysisยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท7 2.5 Statistical analysisยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท7 Chapter 3. Resultsยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท9 Chapter 4. Discussionยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท11 Chapter 5. Conclusionยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท19 Referencesยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท20 Tables ๏ผ† Figuresยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท25 Abstract in Koreanยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท36Docto

    Norm Tweaking: High-performance Low-bit Quantization of Large Language Models

    Full text link
    As the size of large language models (LLMs) continues to grow, model compression without sacrificing accuracy has become a crucial challenge for deployment. While some quantization methods, such as GPTQ, have made progress in achieving acceptable 4-bit weight-only quantization, attempts at lower bit quantization often result in severe performance degradation. In this paper, we introduce a technique called norm tweaking, which can be used as a plugin in current PTQ methods to achieve high precision while being cost-efficient. Our approach is inspired by the observation that rectifying the quantized activation distribution to match its float counterpart can readily restore accuracy for LLMs. To achieve this, we carefully design a tweaking strategy that includes calibration data generation and channel-wise distance constraint to update the weights of normalization layers for better generalization. We conduct extensive experiments on various datasets using several open-sourced LLMs. Our method demonstrates significant improvements in both weight-only quantization and joint quantization of weights and activations, surpassing existing PTQ methods. On GLM-130B and OPT-66B, our method even achieves the same level of accuracy at 2-bit quantization as their float ones. Our simple and effective approach makes it more practical for real-world applications

    UMIE: Unified Multimodal Information Extraction with Instruction Tuning

    Full text link
    Multimodal information extraction (MIE) gains significant attention as the popularity of multimedia content increases. However, current MIE methods often resort to using task-specific model structures, which results in limited generalizability across tasks and underutilizes shared knowledge across MIE tasks. To address these issues, we propose UMIE, a unified multimodal information extractor to unify three MIE tasks as a generation problem using instruction tuning, being able to effectively extract both textual and visual mentions. Extensive experiments show that our single UMIE outperforms various state-of-the-art (SoTA) methods across six MIE datasets on three tasks. Furthermore, in-depth analysis demonstrates UMIE's strong generalization in the zero-shot setting, robustness to instruction variants, and interpretability. Our research serves as an initial step towards a unified MIE model and initiates the exploration into both instruction tuning and large language models within the MIE domain. Our code, data, and model are available at https://github.com/ZUCC-AI/UMI
    • โ€ฆ
    corecore