128 research outputs found

    Research on the Comparison and Development of Matchmaking Services at Home and Abroad

    Get PDF
    This article summarizes the feasibility of using value co-creation theory to operate and manage the internet matchmaking industry by reviewing the matchmaking service models and characteristics of developed countries and regions abroad, and combining it with the current development status of internet matchmaking websites in China. This provides reference suggestions for the construction of services for Chinese internet matchmaking enterprises and has practical significance for the current development of internet matchmaking services in China

    Bright room temperature single photon source at telecom range in cubic silicon carbide

    Full text link
    Single photon emitters (SPEs) play an important role in a number of quantum information tasks such as quantum key distributions. In these protocols, telecom wavelength photons are desired due to their low transmission loss in optical fibers. In this paper, we present a study of bright single-photon emitters in cubic silicon carbide (3C-SiC) emitting in the telecom range. We find that these emitters are photostable and bright at room temperature with a count rate of ~ MHz. Together with the fact that SiC is a growth and fabrication-friendly material, our result may pave the way for its future application in quantum communication technology applications.Comment: Accepted by Nature Communication

    Instability of the Octarepeat Region of the Human Prion Protein Gene

    Get PDF
    Prion diseases are a family of unique fatal transmissible neurodegenerative diseases that affect humans and many animals. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common prion disease in humans, accounting for 85–90% of all human prion cases, and exhibits a high degree of diversity in phenotypes. The etiology of sCJD remains to be elucidated. The human prion protein gene has an octapeptide repeat region (octarepeats) that normally contains 5 repeats of 24–27 bp (1 nonapeptide and 4 octapeptide coding sequences). An increase of the octarepeat numbers to six or more or a decrease of the octarepeat number to three is linked to genetic prion diseases with heterogeneous phenotypes in humans. Here we report that the human octarepeat region is prone to either contraction or expansion when subjected to PCR amplification in vitro using Taq or Pwo polymerase and when replicated in wild type E. coli cells. Octarepeat insertion mutants were even less stable, and the mutation rate for the wild type octarepeats was much higher when replicated in DNA mismatch repair-deficient E.coli cells. All observed octarepeat mutants resulting from DNA replication in E.coli were contained in head-to-head plasmid dimers and DNA mfold analysis (http://mfold.rna.albany.edu/?q=mfold/DNA-Folding-Form) indicates that both DNA strands of the octarepeat region would likely form multiple stable hairpin structures, suggesting that the octarepeat sequence may form stable hairpin structures during DNA replication or repair to cause octarepeat instability. These results provide the first evidence supporting a somatic octarepeat mutation-based model for human sCJD etiology: 1) the instability of the octarepeat region leads to accumulation of somatic octarepeat mutations in brain cells during development and aging, 2) this instability is augmented by compromised DNA mismatch repair in aged cells, and 3) eventually some of the octarepeat mutation-containing brain cells start spontaneous de novo prion formation and replication to initiate sCJD

    The Application of Three-Dimensional Collagen-Scaffolds Seeded with Myoblasts to Repair Skeletal Muscle Defects

    Get PDF
    Three-dimensional (3D) engineered tissue constructs are a novel and promising approach to tissue repair and regeneration. 3D tissue constructs have the ability to restore form and function to damaged soft tissue unlike previous methods, such as plastic surgery, which are able to restore only form, leaving the function of the soft tissue often compromised. In this study, we seeded murine myoblasts (C2C12) into a collagen composite scaffold and cultured the scaffold in a roller bottle cell culture system in order to create a 3D tissue graft in vitro. The 3D graft created in vitro was then utilized to investigate muscle tissue repair in vivo. The 3D muscle grafts were implanted into defect sites created in the skeletal muscles in mice. We detected that the scaffolds degraded slowly over time, and muscle healing was improved which was shown by an increased quantity of innervated and vascularized regenerated muscle fibers. Our results suggest that the collagen composite scaffold seeded with myoblasts can create a 3D muscle graft in vitro that can be employed for defect muscle tissue repair in vivo

    Extreme Dynamic Responses of MW-Level Wind Turbine Tower in the Strong Typhoon Considering Wind-Rain Loads

    Get PDF
    The damage and collapse accidents of wind turbines during violent typhoons and rainstorms have increased in recent years. To determine the dynamic response characteristics of high-power wind turbines under extreme conditions, wind load and rain load are simulated. The typhoon average wind velocity and fluctuating wind velocity are simulated by the unstable wind profile and harmony superposition method. The raindrop size distribution is simulated by the M-P spectrum, and the rain load is calculated according to the momentum theorem. A finite element model is established to study the aerodynamic responses of a wind turbine under random typhoon load and typhoon-rain loads. The maximum displacements and accelerations at the tower top and the maximum von Mises stresses at the tower bottom are calculated and compared after considering various combinations of wind direction deflections and rainfall intensities. The results indicate that instantaneous wind direction deflection has a substantial impact on the dynamic responses of wind turbines, and after introducing the effect of rain, the dynamic responses increase up to 13.7% with increasing rainfall intensities. This study has significant implications for analysing collapse accidents of wind turbines and for optimising the design of wind turbines under extreme typhoon conditions

    Research on Fault Parameters Modeling Approach of Aircraft IDG

    Get PDF
    The essence of the faults of the aircraft IDG (Integrated Drive Generator) is the change of its internal structure parameters. In this paper, mathematical models of the exciter and the main generator in aircraft IDG are constructed and the relationship between the parameter change and the faults can be observed directly through the mathematical models. The mathematical models are simulated in MATLAB/Simulink. After modifying certain fault parameters, the relevant fault waveform of aircraft IDG can be acquired

    Electronic properties of monolayer copper selenide with one-dimensional moir\'e patterns

    Full text link
    Strain engineering is a vital way to manipulate the electronic properties of two-dimensional (2D) materials. As a typical representative of transition metal mono-chalcogenides (TMMs), a honeycomb CuSe monolayer features with one-dimensional (1D) moir\'e patterns owing to the uniaxial strain along one of three equivalent orientations of Cu(111) substrates. Here, by combining low-temperature scanning tunneling microscopy/spectroscopy (STM/S) experiments and density functional theory (DFT) calculations, we systematically investigate the electronic properties of the strained CuSe monolayer on the Cu(111) substrate. Our results show the semiconducting feature of CuSe monolayer with a band gap of 1.28 eV and the 1D periodical modulation of electronic properties by the 1D moir\'e patterns. Except for the uniaxially strained CuSe monolayer, we observed domain boundary and line defects in the CuSe monolayer, where the biaxial-strain and strain-free conditions can be investigated respectively. STS measurements for the three different strain regions show that the first peak in conduction band will move downward with the increasing strain. DFT calculations based on the three CuSe atomic models with different strain inside reproduced the peak movement. The present findings not only enrich the fundamental comprehension toward the influence of strain on electronic properties at 2D limit, but also offer the benchmark for the development of 2D semiconductor materials.Comment: 14 pages, 12 figures, 25 referenc

    Coherent manipulation of nitrogen vacancy centers in 4H silicon carbide with resonant excitation

    Full text link
    Silicon carbide (SiC) has become a key player in realization of scalable quantum technologies due to its ability to host optically addressable spin qubits and wafer-size samples. Here, we have demonstrated optically detected magnetic resonance (ODMR) with resonant excitation, and clearly identified the ground state energy levels of the NV centers in 4H-SiC. Coherent manipulation of NV centers in SiC has been achieved with Rabi and Ramsey oscillations. Finally, we show the successful generation and characterization of single nitrogen vacancy (NV) center in SiC employing ion implantation. Our results are highlighting the key role of NV centers in SiC as a potential candidate for quantum information processing

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore