469 research outputs found
Incentive effect of structural tax reduction policy on consumption upgrading and high-tech industry
China is implementing a structural tax reduction policy to
upgrade the structure of household consumption and promote
the development of high-tech industry. This article constructs a
heterogeneous NK-DSGE (New Keynesian - Dynamic Stochastic
General Equilibrium) model to study the effects of tax reduction
policies on consumption upgrading and the development of
high-tech industry. The tax categories involved in this model are
divided into demand-side tax and supply-side tax. We build two
indexes to measure the consumption structure and the development
of high-tech industry. It is found that reducing high-tech
enterprise income tax would upgrade the consumption structure
and promote the development of high-tech industries in the short
term. Reducing low-tech enterprise income tax would achieve
similar effects in the medium and long term. Moreover, tax such
as consumption tax, labour income tax and capital income tax
reduction policies can upgrade the consumption structure and
promote the development of high-tech industry in the long term.
Finally, this article finds that when the elasticity of labour substitution
is smaller, reducing high-tech enterprise income tax is
more effective
A New Algorithm for Bearings-Only Parametric Trajectory Tracking
AbstractFor the single sensor target tracking with bearings-only measurements, a novel trajectory invariable-information target tracking algorithm was proposed, and bearings-only target can be tracked by the parameter trajectory. For the measure frequency of sensor is high, the mathematic model of bearings-only tracking is analyzed by dividing the trajectory into many linearization parts. The tracking parameter of bearings-only target trajectory is deduced, so the bearings-only target can be tracked by the parameter trajectory. The simulation results show that the new algorithm has a favorable tracking precision
FIELD EXPERIMENTAL STUDY ON EXTERNAL PRESTRESSING REINFORCEMENT OF A 420M PC CONTINUOUS BEAM BRIDGE
In this paper, the practical engineering of a 420 m PC continuous beam bridge is taken as the research object, and an external prestressing reinforcement method is proposed to reinforce the damaged and cracked girder. The paper is to study the structural performance of PC continuous beam bridge before and after reinforcement. The heavy vehicle loading test of reinforced PC continuous beam bridge was carried out. A total of three test spans were selected, and each test span selected seven deflection test section and a strain test section. The corresponding finite element model was established and verified by the test results. Finally, it was concluded in this study that the external prestressing reinforcement method has a good effect on improving the loading capacity and overall performance of damaged bridges
The arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis
Cell water permeability and cell wall properties are critical to survival of plant cells during freezing, however the underlying molecular mechanisms remain elusive. Here, we report that a specifically cold-induced nuclear protein, Tolerant to Chilling and Freezing 1 (TCF1), interacts with histones H3 and H4 and associates with chromatin containing a target gene, BLUE-COPPER-BINDING PROTEIN (BCB), encoding a glycosylphosphatidylinositol-anchored protein that regulates lignin biosynthesis. Loss of TCF1 function leads to reduced BCB transcription through affecting H3K4me2 and H3K27me3 levels within the BCB gene, resulting in reduced lignin content and enhanced freezing tolerance. Furthermore, plants with knocked-down BCB expression (amiRNA-BCB) under cold acclimation had reduced lignin accumulation and increased freezing tolerance. The pal1pal2 double mutant (lignin content reduced by 30% compared with WT) also showed the freezing tolerant phenotype, and TCF1 and BCB act upstream of PALs to regulate lignin content. In addition, TCF1 acts independently of the CBF (C-repeat binding factor) pathway. Our findings delineate a novel molecular pathway linking the TCF1-mediated cold-specific transcriptional program to lignin biosynthesis, thus achieving cell wall remodeling with increased freezing tolerance
OLFML3 Expression is Decreased during Prenatal Muscle Development and Regulated by MicroRNA-155 in Pigs
The Olfactomedin-like 3 (OLFML3) gene has matrix-related function involved in embryonic development. MicroRNA-155 (miR-155), 21- to 23-nucleotides (nt) noncoding RNA, regulated myogenesis by target mRNA. Our LongSAGE analysis suggested that OLFML3 gene was differently expressed during muscle development in pig. In this study, we cloned the porcine OLFML3 gene and detected its tissues distribution in adult Tongcheng pigs and dynamical expression in developmental skeletal muscle (12 prenatal and 10 postnatal stages) from Landrace (lean-type) and Tongcheng (obese-type) pigs. Subsequently, we analyzed the interaction between OLFML3 and miR-155. The OLFML3 was abundantly expressed in liver and pancreas, moderately in lung, small intestine and placenta, and weakly in other tissues and postnatal muscle. There were different dynamical expression patterns between Landrace and Tongcheng pigs during prenatal skeletal muscle development. The OLFML3 was down-regulated (33-50 days post coitus, dpc), subsequently up-regulated (50-70 dpc), and then down-regulated (70-100 dpc) in Landrace pigs, while in Tongcheng pigs, it was down-regulated (33-50 dpc), subsequently up-regulated (50-55 dpc) and then down-regulated (55-100 dpc). There was higher expression in Tongcheng than Landrace in prenatal muscle from 33 to 60 dpc, and opposite situation from 65 to 100 dpc. Dual luciferase assay and real time PCR documented that OLFML3 expression was regulated by miR-155 at mRNA level. Our research indicated that OLFML3 gene may affect prenatal skeletal muscle development and was regulated by miR-155. These finding will help understanding biological function and expression regulation of OLFML3 gene in mammal animals
LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs
Transcriptional profiling of Tongcheng and Landrace pigs using long serial analysis of gene expression provides insight into the molecular mechanism underlying differences in muscle growth
Integrative metabolomic and transcriptomic analysis reveals difference in glucose and lipid metabolism in the longissimus muscle of Luchuan and Duroc pigs
Luchuan pig, an obese indigenous Chinese porcine breed, has a desirable meat quality and reproductive capacity. Duroc, a traditional western breed, shows a faster growth rate, high feed efficiency and high lean meat rate. Given the unique features these two porcine breeds have, it is of interest to investigate the underlying molecular mechanisms behind their distinctive nature. In this study, the metabolic and transcriptomic profiles of longissimus dorsi muscle from Duroc and Luchuan pigs were compared. A total of 609 metabolites were identified, 77 of which were significantly decreased in Luchuan compared to Duroc, and 71 of which were significantly elevated. Most differentially accumulated metabolites (DAMs) upregulated in Luchuan were glycerophospholipids, fatty acids, oxidized lipids, alcohols, and amines, while metabolites downregulated in Luchuan were mostly amino acids, organic acids and nucleic acids, bile acids and hormones. From our RNA-sequencing (RNA-seq) data we identified a total of 3638 differentially expressed genes (DEGs), 1802 upregulated and 1836 downregulated in Luchuan skeletal muscle compared to Duroc. Combined multivariate and pathway enrichment analyses of metabolome and transcriptome results revealed that many of the DEGs and DAMs are associated with critical energy metabolic pathways, especially those related to glucose and lipid metabolism. We examined the expression of important DEGs in two pathways, AMP-activated protein kinase (AMPK) signaling pathway and fructose and mannose metabolism, using Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Genes related to glucose uptake, glycolysis, glycogen synthesis, fatty acid synthesis (PFKFB1, PFKFB4, MPI, TPI1, GYS1, SLC2A4, FASN, IRS1, ULK1) are more activated in Luchuan, while genes related to fatty acid oxidation, cholesterol synthesis (CPT1A, HMGCR, FOXO3) are more suppressed. Energy utilization can be a decisive factor to the distinctive metabolic, physiological and nutritional characteristics in skeletal muscle of the two breeds we studied. Our research may facilitate future porcine breeding projects and can be used to reveal the potential molecular basis of differences in complex traits between various breeds
- …