158 research outputs found
Sequential Dexterity: Chaining Dexterous Policies for Long-Horizon Manipulation
Many real-world manipulation tasks consist of a series of subtasks that are
significantly different from one another. Such long-horizon, complex tasks
highlight the potential of dexterous hands, which possess adaptability and
versatility, capable of seamlessly transitioning between different modes of
functionality without the need for re-grasping or external tools. However, the
challenges arise due to the high-dimensional action space of dexterous hand and
complex compositional dynamics of the long-horizon tasks. We present Sequential
Dexterity, a general system based on reinforcement learning (RL) that chains
multiple dexterous policies for achieving long-horizon task goals. The core of
the system is a transition feasibility function that progressively finetunes
the sub-policies for enhancing chaining success rate, while also enables
autonomous policy-switching for recovery from failures and bypassing redundant
stages. Despite being trained only in simulation with a few task objects, our
system demonstrates generalization capability to novel object shapes and is
able to zero-shot transfer to a real-world robot equipped with a dexterous
hand. More details and video results could be found at
https://sequential-dexterity.github.ioComment: CoRL 202
Multifunctional targeting micelle nanocarriers with both imaging and therapeutic potential for bladder cancer.
BackgroundWe previously developed a bladder cancer-specific ligand (PLZ4) that can specifically bind to both human and dog bladder cancer cells in vitro and in vivo. We have also developed a micelle nanocarrier drug-delivery system. Here, we assessed whether the targeting micelles decorated with PLZ4 on the surface could specifically target dog bladder cancer cells.Materials and methodsMicelle-building monomers (ie, telodendrimers) were synthesized through conjugation of polyethylene glycol with a cholic acid cluster at one end and PLZ4 at the other, which then self-assembled in an aqueous solution to form micelles. Dog bladder cancer cell lines were used for in vitro and in vivo drug delivery studies.ResultsCompared to nontargeting micelles, targeting PLZ4 micelles (23.2 ± 8.1 nm in diameter) loaded with the imaging agent DiD and the chemotherapeutic drug paclitaxel or daunorubicin were more efficient in targeted drug delivery and more effective in cell killing in vitro. PLZ4 facilitated the uptake of micelles together with the cargo load into the target cells. We also developed an orthotopic invasive dog bladder cancer xenograft model in mice. In vivo studies with this model showed the targeting micelles were more efficient in targeted drug delivery than the free dye (14.3×; P < 0.01) and nontargeting micelles (1.5×; P < 0.05).ConclusionTargeting micelles decorated with PLZ4 can selectively target dog bladder cancer cells and potentially be developed as imaging and therapeutic agents in a clinical setting. Preclinical studies of targeting micelles can be performed in dogs with spontaneous bladder cancer before proceeding with studies using human patients
Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment.
Nanotheranostics with integrated diagnostic and therapeutic functions show exciting potentials towards precision nanomedicine. However, targeted delivery of nanotheranostics is hindered by several biological barriers. Here, we report the development of a dual size/charge- transformable, Trojan-Horse nanoparticle (pPhD NP) for delivery of ultra-small, full active pharmaceutical ingredients (API) nanotheranostics with integrated dual-modal imaging and trimodal therapeutic functions. pPhD NPs exhibit ideal size and charge for drug transportation. In tumour microenvironment, pPhD NPs responsively transform to full API nanotheranostics with ultra-small size and higher surface charge, which dramatically facilitate the tumour penetration and cell internalisation. pPhD NPs enable visualisation of biodistribution by near-infrared fluorescence imaging, tumour accumulation and therapeutic effect by magnetic resonance imaging. Moreover, the synergistic photothermal-, photodynamic- and chemo-therapies achieve a 100% complete cure rate on both subcutaneous and orthotopic oral cancer models. This nanoplatform with powerful delivery efficiency and versatile theranostic functions shows enormous potentials to improve cancer treatment
Research on the economic security application of energy economy in a low-carbon sustainable development society
Research on the economic security application of energy economy in a low-carbon sustainable development society is an important research field. Its purpose is to explore how to achieve the safe development of the national economy in the context of low-carbon sustainable development, including economic structural adjustment, green technology innovation, resource conservation and recycling, environmental protection, etc. This article explores how to ensure green and sustainable development of energy security and the security risk assessment of green energy economy
On the Circular Polarisation of Repeating Fast Radio Bursts
Fast spinning (e.g., sub-second) neutron star with ultra-strong magnetic
fields (or so-called magnetar) is one of the promising origins of repeating
fast radio bursts (FRBs). Here we discuss circularly polarised emissions
produced by propagation effects in the magnetosphere of fast spinning
magnetars. We argue that the polarisation-limiting region is well beyond the
light cylinder, suggesting that wave mode coupling effects are unlikely to
produce strong circular polarisation for fast spinning magnetars. Cyclotron
absorption could be significant if the secondary plasma density is high.
However, high degrees of circular polarisation can only be produced with large
asymmetries in electrons and positrons. We draw attention to the non-detection
of circular polarisation in current observations of known repeating FRBs. We
suggest that the circular polarisation of FRBs could provide key information on
their origins and help distinguish different radiation mechanisms.Comment: ApJ accepte
- …