152 research outputs found

    Blood Transcriptomics and Metabolomics for Mersonalized Medicine

    Get PDF
    Molecular analysis of blood samples is pivotal to clinical diagnosis and has been intensively investigated since the rise of systems biology. Recent developments have opened new opportunities to utilize transcriptomics and metabolomics for personalized and precision medicine. Efforts from human immunology have infused into this area exquisite characterizations of subpopulations of blood cells. It is now possible to infer from blood transcriptomics, with fine accuracy, the contribution of immune activation and of cell subpopulations. In parallel, high-resolution mass spectrometry has brought revolutionary analytical capability, detecting N10,000 metabolites, together with environmental exposure, dietary intake, microbial activity, and pharmaceutical drugs. Thus, the re-examination of blood chemicals by metabolomics is in order. Transcriptomics and metabolomics can be integrated to provide a more comprehensive understanding of the human biological states. We will review these new data and methods and discuss how they can contribute to personalized medicine

    Maximization Network Throughput based on Maximal Flow for Single-Source Two-Destinations Multicast

    Get PDF
    For guaranteeing all multicast destination nodes receiving the source information with their maximal flow respectively and obtaining the network maximal throughput, a heuristic algorithm based on network coding, Maximal Flow for Single-source Two-destinations Multicast (MFSTM) is proposed to maximize the network throughput. By calculating the each destination’s maximal flow, the number of link-disjoint paths which equals to destination’s maximal flow, are searched for each destination to construct the network coding graph. A heuristic algorithm based on network coding is designed to delete the redundant link in the network coding graph and guarantee the network throughput maximization. Comparing the traditional maximal multicast stream algorithm based on network coding, the simulation results show that the MFSTM algorithm makes two destinations receive the information at the speed of their maximal flow respectively, and decode the source node information at each destination node successfully

    Glycogen synthase kinase-3β inhibition induces nuclear factor-κB-mediated apoptosis in pediatric acute lymphocyte leukemia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular therapies that target genetic abnormalities in leukemic cells and their affected signaling pathways have been emerging in pediatric acute lymphoblastic leukemia (ALL). Glycogen synthase kinase-3β (GSK-3β) has recently been found to positively regulate the activity of nuclear factor-κB (NF-κB). Here, we investigated the relationship between GSK-3β inhibition and NF-κB in apoptosis of pediatric primary leukemia cells obtained from 39 newly diagnosed ALL children in China.</p> <p>Methods</p> <p>Bone marrow mononuclear cells (BMMC) were isolated by density gradient centrifugation from the heparinized aspirates of children with ALL. We used immunofluorescence staining to detect nuclear GSK-3β in these cells. After treatment with chemically distinct GSK-3β inhibitors in vitro, NF-κB transcriptional activity was identified by means of western blotting and electrophoretic mobility shift assay (EMSA). NF-κB-mediated apoptosis was detected by Annexin V-PE/7-AAD double-staining flow cytometry. The expression level of the <it>survivin </it>gene was detected by reverse-transcriptase polymerase chain reaction (RT-PCR).</p> <p>Results</p> <p>GSK-3β significantly accumulates in the nuclei of ALL cells than in the nuclei of control cells. Cell death induced by GSK-3β inhibition in ALL cells was mediated by a downregulation of NF-κB p65 transcriptional activity. GSK-3β inhibition significantly decreased the expression of the NF-κB target gene <it>survivin</it>.</p> <p>Conclusions</p> <p>These results indicate that inhibition of GSK-3β downregulates the NF-κB activation pathway, leading to suppression of the expression of an NF-κB-regulated gene and promotion of apoptosis in ALL cells in vitro. Furthermore, our findings suggest that GSK-3β or NF-κB is a potential therapeutic target in the treatment of pediatric ALL.</p

    Fast multiple gene fragment ligation method based on homologous recombination

    Get PDF
    With the established BioBrick Assembly standards, ligation of different parts has to be accomplished step by step. It can be time-consuming when dealing with multiple fragment ligation. BBF RFC 62 is developed aimed at completing the ligation of multiple fragments quickly and efficiently based on homologous recombination

    [68Ga]Ga-DOTA-FAPI-04 PET/MR in patients with acute myocardial infarction: potential role of predicting left ventricular remodeling.

    Get PDF
    PURPOSE To assess predictive value of 68Ga-labeled fibroblast activation protein inhibitor-04 ([68Ga]Ga-DOTA-FAPI-04) PET/MR for late left ventricular (LV) remodeling in patients with ST-segment elevated myocardial infarction (STEMI). METHODS Twenty-six patients with STEMI were included in the study. [68Ga]Ga-DOTA-FAPI-04 PET/MR was performed at baseline and at average 12 months after STEMI. LV remodeling was defined as >10% increase in LV end-systolic volume (LVESV) from baseline to 12 months. RESULTS The LV remodeling group demonstrated higher [68Ga]Ga-DOTA-FAPI-04 uptake volume (UV) at baseline than the non-LV remodeling group (p < 0.001). [68Ga]Ga-DOTA-FAPI-04 UV at baseline was a significant predictor (OR = 1.048, p = 0.011) for LV remodeling at 12 months after STEMI. Compared to clinical information, MR imaging and cardiac function parameters at baseline, [68Ga]Ga-DOTA-FAPI-04 UV demonstrated better predictive ability (AUC = 0.938, p < 0.001) for late LV remodeling, with sensitivity of 100.0% and specificity of 81.3%. CONCLUSIONS [68Ga]Ga-DOTA-FAPI-04 PET/MR is an effective tool to non-invasively quantify myocardial fibroblasts activation, and baseline [68Ga]Ga-DOTA-FAPI-04 UV may have potential predictive value for late LV remodeling

    Demethyleneberberine alleviated the inflammatory response by targeting MD-2 to inhibit the TLR4 signaling

    Get PDF
    IntroductionThe colitis induced by trinitrobenzenesulfonic acid (TNBS) is a chronic and systemic inflammatory disease that leads to intestinal barrier dysfunction and autoimmunedisorders. However, the existing treatments of colitis are associated with poor outcomes, and the current strategies remain deep and long-time remission and the prevention of complications. Recently, demethyleneberberine (DMB) has been reported to be a potential candidate for the treatment of inflammatory response that relied on multiple pharmacological activities, including anti-oxidation and antiinflammation. However, the target and potential mechanism of DMB in inflammatory response have not been fully elucidated.MethodsThis study employed a TNBS-induced colitis model and acute sepsis mice to screen and identify the potential targets and molecular mechanisms of DMB in vitro and in vivo. The purity and structure of DMB were quantitatively analyzed by high-performance liquid chromatography (HPLC), mass spectrometry (MS), Hydrogen nuclear magnetic resonance spectroscopy (1H-NMR), and infrared spectroscopy (IR), respectively. The rats were induced by a rubber hose inserted approximately 8 cm through their anus to be injected with TNBS. Acute sepsis was induced by injection with LPS via the tail vein for 60 h. These animals with inflammation were orally administrated with DMB, berberine (BBR), or curcumin (Curc), respectively. The eukaryotic and prokaryotic expression system of myeloid differentiation protein-2 (MD-2) and its mutants were used to evaluate the target of DMB in inflammatory response.ReslutsDMB had two free phenolic hydroxyl groups, and the purity exceeded 99% in HPLC. DMB alleviated colitis and suppressed the activation of TLR4 signaling in TNBS-induced colitis rats and LPS-induced RAW264.7 cells. DMB significantly blocked TLR4 signaling in both an MyD88-dependent and an MyD88-independent manner by embedding into the hydrophobic pocket of the MD-2 protein with non-covalent bonding to phenylalanine at position 76 in a pi–pi T-shaped interaction. DMB rescued mice from sepsis shock induced by LPS through targeting the TLR4–MD-2 complex.ConclusionTaken together, DMB is a promising inhibitor of the MD-2 protein to suppress the hyperactivated TLR4 signaling in inflammatory response

    The sialic acid-dependent nematocyst discharge process in relation to its physical-chemical properties is a role model for nanomedical diagnostic and therapeutic tools

    Get PDF
    Formulas derived from theoretical physics provide important insights about the nematocyst discharge process of Cnidaria (Hydra, jellyfishes, box-jellyfishes and sea-anemones). Our model description of the fastest process in living nature raises and answers questions related to the material properties of the cell- and tubule-walls of nematocysts including their polysialic acid (polySia) dependent target function. Since a number of tumor-cells, especially brain-tumor cells such as neuroblastoma tissues carry the polysaccharide chain polySia in similar concentration as fish eggs or fish skin, it makes sense to use these findings for new diagnostic and therapeutic approaches in the field of nanomedicine. Therefore, the nematocyst discharge process can be considered as a bionic blue-print for future nanomedical devices in cancer diagnostics and therapies. This approach is promising because the physical background of this process can be described in a sufficient way with formulas presented here. Additionally, we discuss biophysical and biochemical experiments which will allow us to define proper boundary conditions in order to support our theoretical model approach. PolySia glycans occur in a similar density on malignant tumor cells than on the cell surfaces of Cnidarian predators and preys. The knowledge of the polySia-dependent initiation of the nematocyst discharge process in an intact nematocyte is an essential prerequisite regarding the further development of target-directed nanomedical devices for diagnostic and therapeutic purposes. The theoretical description as well as the computationally and experimentally derived results about the biophysical and biochemical parameters can contribute to a proper design of anti-tumor drug ejecting vessels which use a stylet-tubule system. Especially, the role of nematogalectins is of interest because these bridging proteins contribute as well as special collagen fibers to the elastic band properties. The basic concepts of the nematocyst discharge process inside the tubule cell walls of nematocysts were studied in jellyfishes and in Hydra which are ideal model organisms. Hydra has already been chosen by Alan Turing in order to figure out how the chemical basis of morphogenesis can be described in a fundamental way. This encouraged us to discuss the action of nematocysts in relation to morphological aspects and material requirements. Using these insights, it is now possible to discuss natural and artificial nematocyst-like vessels with optimized properties for a diagnostic and therapeutic use, e.g., in neurooncology. We show here that crucial physical parameters such as pressure thresholds and elasticity properties during the nematocyst discharge process can be described in a consistent and satisfactory way with an impact on the construction of new nanomedical devices

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Inoculative releases of

    No full text
    Introduction. Integrated pest management is becoming popular in China. To supply safe peach fruits (Prunus persica cv. Okubo) to the population and to preserve the environment, this study aimed to investigate the biological control of Grapholita molesta (oriental fruit moth, OFM) using Trichogramma dendrolimi and to discuss how to effectively use this wasp for managing OFM. Materials and methods. T. dendrolimi was released with 1-week frequency at different release distances (5.0, 7.5, 10.0, 12.5 and 15.0 m) in 5 experimental plots, and the wasp density was surveyed after release. The OFM adult number, effective wilting shoot number, and damaged peach number were surveyed twice. Results and discussion. T. dendrolimi was the dominant natural enemy of OFM in the peach orchard. Wasp density was reduced in a release distance-dependent manner in the treated plots and was much lower than that in the control plots. The OFM adults of the 2nd generation were not obviously suppressed by T. dendrolimi. Compared with the control plot, the numbers of effective wilting shoots and damaged peaches were significantly reduced by releasing wasps (P < 0.05), especially in the 15 m release plot. However, there was no significant difference in the density of the wasps during the two surveys, the rate of increase of the number of effective wilting shoots, the rate of decrease of the number of damaged peaches or the number of OFM adults. Conclusion. The inoculative release of T. dendrolimi is an effective and safe approach to inhibiting OFM population. Moreover, releasing the wasps at a distance of 15 m is strongly recommended in practice
    corecore