134 research outputs found

    Measuring the healthcare spatial deprivation in multiple perspectives: a case study of Ningbo city

    Get PDF
    BackgroundEqualization of medical services is fundamental to the development of people-centered urbanization in Chinese-style modernization. In the past few decades, the achievements of the Chinese economy have remarkably increased the quantity and quality of healthcare services. Under rapid urbanization, large-scale population floating has led to a mismatch between supply and demand for healthcare services and raised the tension between spatial demographic reorganization and the relative stability of public healthcare service facilities. The current studies of healthcare spatial deprivation (HSD) mainly are focus on either supply, or demand, or accessibility based on census data. Therefore, it is necessary to build a multiple index that could give a physical result by using ordinary indices and mixing them together by relative methods to overcome this problem.MeasureWe chose Ningbo city, Zhejiang province, located in the eastern coastal region of China, as the study area. Moreover, from 2000 to 2020, the urbanization rate of Ningbo rapidly increased from 55.75 to 78.0%. In order to show the HSD in a rapidly urbanizing city, we first consider the subdistrict as the scale, innovatively absolve the medical accessibility to the IRD (Index of Relative Disadvantage), and construct the Index of Healthcare Relative Spatial Deprivation (IHRSD) framework. Based on the seventh national census data, we apply an IHRSD with Entropy Weight Method, 2SFCA (Two-step Floating Catchment Area Method) and GDM (Geographical Detector Model) to measure where and who are vulnerable to deprive in healthcare.ResultMeasured by IHRSD, (1) There is stronger healthcare spatial deprivation in peri-urban and developed-town in Ningbo; (2) Young childhood and fertile-women are vulnerable to healthcare spatial deprivation, in fact, they are spatially deprived in healthcare; (3) The socio-demographic attribute is a significant factor in healthcare spatial deprivation, especially the level of aging and population clustering; and (4) The relationship between healthcare spatial deprivation and accessibility shows an inverted U-shaped structure.ConclusionOur experiments show that the problems of HSD are mainly from the characteristics of the population, the layout of healthcare service institutions, the accessibility of the traffic system and the natural conditions. Although the constructions of equalization of primary medical and health services, hierarchical diagnosis, and treatment, and the “healthcare complex” are currently trying to reduce the phenomenon of HSD. Faced with groups and location, the acquisition of the accurately healthcare service supply is the key to realizing healthcare spatial equity

    The immunoregulation effect of tumor microenvironment in pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic cancer has the seventh highest death rate of all cancers. The absence of any serious symptoms, coupled with a lack of early prognostic and diagnostic markers, makes the disease untreatable in most cases. This leads to a delay in diagnosis and the disease progresses so there is no cure. Only about 20% of cases are diagnosed early. Surgical removal is the preferred treatment for cancer, but chemotherapy is standard for advanced cancer, although patients can eventually develop drug resistance and serious side effects. Chemoresistance is multifactorial because of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment (TME). Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. This review focuses on the immune-related components of TME and the interactions between tumor cells and TME during the development and progression of pancreatic cancer, including immunosuppression, tumor dormancy and escape. Finally, we discussed a variety of immune components-oriented immunotargeting drugs in TME from a clinical perspective

    Artificial Micromotors in the Mouse’s Stomach: A Step toward in Vivo Use of Synthetic Motors

    Get PDF
    Artificial micromotors, operating on locally supplied fuels and performing complex tasks, offer great potential for diverse biomedical applications, including autonomous delivery and release of therapeutic payloads and cell manipulation. Various types of synthetic motors, utilizing different propulsion mechanisms, have been fabricated to operate in biological matrices. However, the performance of these man-made motors has been tested exclusively under in vitro conditions (outside the body); their behavior and functionalities in an in vivo environment (inside the body) remain unknown. Herein, we report an in vivo study of artificial micromotors in a living organism using a mouse model. Such in vivo evaluation examines the distribution, retention, cargo delivery, and acute toxicity profile of synthetic motors in mouse stomach via oral administration. Using zinc-based micromotors as a model, we demonstrate that the acid-driven propulsion in the stomach effectively enhances the binding and retention of the motors as well as of cargo payloads on the stomach wall. The body of the motors gradually dissolves in the gastric acid, autonomously releasing their carried payloads, leaving nothing toxic behind. This work is anticipated to significantly advance the emerging field of nano/micromotors and to open the door to in vivo evaluation and clinical applications of these synthetic motors

    Constant real-space fractal dimensionality and structure evolution in Ti62Cu38 metallic glass under high pressure

    Get PDF
    The structure of binary Ti62Cu38 metallic glass is investigated under pressures up to 33.8 GPa using the pair distribution function analysis based on high-energy x-ray scattering and reverse Monte Carlo (RMC) simulations. At a global scale, its relative volume shows a continuously smooth curve as a function of pressure. The isothermal bulk modulus of Ti62Cu38 metallic glass is estimated as B0=132(3)GPa with B0′=5.8(0.4). At a local scale, the atomic packing structure under compression conditions, which is extracted from RMC simulations, shows that the topological short-range order is dominated by the deformed icosahedron polyhedra and basically maintains stable. From the relationship between the relative volume and changing ratio of the atomic separation distances, the real-space fractal dimensionality of this metallic glass is determined as about 2.5 for all of the first four peaks. This experimental result reveals the consistent nature of the fractal feature on the degree of self-similarity in this sample within the entire experimental pressure range

    Vapor-Driven Propulsion of Catalytic Micromotors

    Get PDF
    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors

    Nanomotor lithography

    Get PDF
    The rapid miniaturization of devices and machines has fuelled the evolution of advanced fabrication techniques. However, the complexity and high cost of the state-of-the-art high-resolution lithographic systems are prompting unconventional routes for nanoscale patterning. Inspired by natural nanomachines, synthetic nanomotors have recently demonstrated remarkable performance and functionality. Here we report a new nano-patterning approach, named ‘nanomotor lithography’, which translates the autonomous movement trajectories of nanomotors into controlled surface features. As a proof of principle, we use metallic nanowire motors as mobile nanomasks and Janus sphere motors as near-field nanolenses to manipulate light beams for generating a myriad of nanoscale features through modular nanomotor design. The complex spatially defined nanofeatures using these dynamic nanoscale optical elements can be achieved through organized assembly and remote guidance of multiple nanomotors. Such ability to transform predetermined paths of moving nanomachines to defined surface patterns provides a unique nanofabrication platform for creating diverse nanodevices

    Nanomotor lithography

    Get PDF
    The rapid miniaturization of devices and machines has fuelled the evolution of advanced fabrication techniques. However, the complexity and high cost of the state-of-the-art high-resolution lithographic systems are prompting unconventional routes for nanoscale patterning. Inspired by natural nanomachines, synthetic nanomotors have recently demonstrated remarkable performance and functionality. Here we report a new nano-patterning approach, named ‘nanomotor lithography’, which translates the autonomous movement trajectories of nanomotors into controlled surface features. As a proof of principle, we use metallic nanowire motors as mobile nanomasks and Janus sphere motors as near-field nanolenses to manipulate light beams for generating a myriad of nanoscale features through modular nanomotor design. The complex spatially defined nanofeatures using these dynamic nanoscale optical elements can be achieved through organized assembly and remote guidance of multiple nanomotors. Such ability to transform predetermined paths of moving nanomachines to defined surface patterns provides a unique nanofabrication platform for creating diverse nanodevices

    Genome-wide identification of the TGA genes in common bean (Phaseolus vulgaris) and revealing their functions in response to Fusarium oxysporum f. sp. phaseoli infection

    Get PDF
    Fusarium wilt, which affects common bean all across the world, is caused by Fusarium oxysporum f. sp. Phaseoli (Fop). It is necessary to have functional genes in response to Fop infection because they might be used to manage disease. As a crucial regulator, TGA-binding transcription factor (TGA) is engaged in the defense mechanism of plants against pathogens. The role of TGA regulators in common bean in response to Fop infection, however, has not been documented. Hence, we performed genome-wide identified and characterized eight TGA genes in common bean. In this study, eight PvTGA genes were distributed on six chromosomes and classified into four subgroups. The PvTGA genes have the same conserved bZIP and DOG1 domains, but there are specific sequence structures in different PvTGAs. Phylogenetic and synteny analysis explained that PvTGA gene has a close genetic relationship with legume TGAs and that PvTGA03 and PvTGA05 may play an important role in evolution. Transcriptome data explained that expression levels of PvTGA genes showed diversity in different tissues. After Fop inoculation, the expression levels of PvTGA03 and PvTGA07 were significantly different between resistant and susceptible genotypes. Under SA treatment, the expression levels of PvTGA03, PvTGA04, PvTGA06, PvTGA07 and PvTGA08 were significantly different. These results imply that PvTGA03 and PvTGA07 play key roles in SA-mediated resistance to Fusarium wilt. Together, these findings advance knowledge of the PvTGA gene family in common bean and will help future studies aimed at reducing Fusarium wilt

    Caspases Switch off the m6A RNA Modification Pathway to Foster the Replication of a Ubiquitous Human Tumor Virus

    Get PDF
    The methylation of RNA at the N6 position of adenosine (m6A) orchestrates multiple biological processes to control development, differentiation, and cell cycle, as well as various aspects of the virus life cycle. How the m6A RNA modification pathway is regulated to finely tune these processes remains poorly understood. Here, we discovered the m6A reader YTHDF2 as a caspase substrate via proteome-wide prediction, followed by in vitro and in vivo validations. We further demonstrated that cleavage-resistant YTHDF2 blocks, while cleavage-mimicking YTHDF2 fragments promote, the replication of a common human oncogenic virus, Epstein-Barr virus (EBV). Intriguingly, our study revealed a feedback regulation between YTHDF2 and caspase-8 via m6A modification of CASP8 mRNA and YTHDF2 cleavage during EBV replication. Further, we discovered that caspases cleave multiple components within the m6A RNA modification pathway to benefit EBV replication. Our study establishes that caspase disarming of the m6A RNA modification machinery fosters EBV replication
    corecore