106 research outputs found

    円筒部品の精密測定に関する研究

    Get PDF
    Tohoku University高偉課

    Training-Free Instance Segmentation from Semantic Image Segmentation Masks

    Full text link
    In recent years, the development of instance segmentation has garnered significant attention in a wide range of applications. However, the training of a fully-supervised instance segmentation model requires costly both instance-level and pixel-level annotations. In contrast, weakly-supervised instance segmentation methods (i.e., with image-level class labels or point labels) struggle to satisfy the accuracy and recall requirements of practical scenarios. In this paper, we propose a novel paradigm for instance segmentation called training-free instance segmentation (TFISeg), which achieves instance segmentation results from image masks predicted using off-the-shelf semantic segmentation models. TFISeg does not require training a semantic or/and instance segmentation model and avoids the need for instance-level image annotations. Therefore, it is highly efficient. Specifically, we first obtain a semantic segmentation mask of the input image via a trained semantic segmentation model. Then, we calculate a displacement field vector for each pixel based on the segmentation mask, which can indicate representations belonging to the same class but different instances, i.e., obtaining the instance-level object information. Finally, instance segmentation results are obtained after being refined by a learnable category-agnostic object boundary branch. Extensive experimental results on two challenging datasets and representative semantic segmentation baselines (including CNNs and Transformers) demonstrate that TFISeg can achieve competitive results compared to the state-of-the-art fully-supervised instance segmentation methods without the need for additional human resources or increased computational costs. The code is available at: TFISegComment: 14 pages,5 figure

    Vertical Semi-Federated Learning for Efficient Online Advertising

    Full text link
    As an emerging secure learning paradigm in leveraging cross-silo private data, vertical federated learning (VFL) is expected to improve advertising models by enabling the joint learning of complementary user attributes privately owned by the advertiser and the publisher. However, the 1) restricted applicable scope to overlapped samples and 2) high system challenge of real-time federated serving have limited its application to advertising systems. In this paper, we advocate new learning setting Semi-VFL (Vertical Semi-Federated Learning) as a lightweight solution to utilize all available data (both the overlapped and non-overlapped data) that is free from federated serving. Semi-VFL is expected to perform better than single-party models and maintain a low inference cost. It's notably important to i) alleviate the absence of the passive party's feature and ii) adapt to the whole sample space to implement a good solution for Semi-VFL. Thus, we propose a carefully designed joint privileged learning framework (JPL) as an efficient implementation of Semi-VFL. Specifically, we build an inference-efficient single-party student model applicable to the whole sample space and meanwhile maintain the advantage of the federated feature extension. Novel feature imitation and ranking consistency restriction methods are proposed to extract cross-party feature correlations and maintain cross-sample-space consistency for both the overlapped and non-overlapped data. We conducted extensive experiments on real-world advertising datasets. The results show that our method achieves the best performance over baseline methods and validate its effectiveness in maintaining cross-view feature correlation

    New insights for the design of bionic robots:adaptive motion adjustment strategies during feline landings

    Get PDF
    Felines have significant advantages in terms of sports energy efficiency and flexibility compared with other animals, especially in terms of jumping and landing. The biomechanical characteristics of a feline (cat) landing from different heights can provide new insights into bionic robot design based on research results and the needs of bionic engineering. The purpose of this work was to investigate the adaptive motion adjustment strategy of the cat landing using a machine learning algorithm and finite element analysis (FEA). In a bionic robot, there are considerations in the design of the mechanical legs. (1) The coordination mechanism of each joint should be adjusted intelligently according to the force at the bottom of each mechanical leg. Specifically, with the increase in force at the bottom of the mechanical leg, the main joint bearing the impact load gradually shifts from the distal joint to the proximal joint; (2) the hardness of the materials located around the center of each joint of the bionic mechanical leg should be strengthened to increase service life; (3) the center of gravity of the robot should be lowered and the robot posture should be kept forward as far as possible to reduce machine wear and improve robot operational accuracy

    N,N′-Bis(2,6-diethyl­phen­yl)acenaphthyl­ene-1,2-diimine

    Get PDF
    The title compound, C32H32N2, has crystallographic twofold rotation symmetry, with two C atoms lying on the rotation axis. The dihedral angle between the substituted benzene ring and the naphthalene ring system is 79.8 (1)°. The crystal structure is stabilized by C—H⋯N inter­actions, which form a chain motif along the b-axis direction

    {(1R,2R)-N,N′-Bis[2-(N-methyl­anilino)benzyl­idene]cyclo­hexane-1,2-diamine-κ2 N,N′}dichloridoiron(II)

    Get PDF
    In the title compound, [FeCl2(C34H36N4)], the FeII ion is coordinated by two Cl atoms and by two N atoms from a (1R,2R)-N,N′-bis[2-(N-methyl­anilino)benzyl­idene]cyclo­hexane-1,2-diamine ligand in a distorted tetra­hedral geometry. The mol­ecule has approximate C 2 point symmetry. The dihedral angles between the phenyl and benzene rings on either side of the ligand are 64.56 (14) and 65.61 (13)°

    Achieving Lightweight Federated Advertising with Self-Supervised Split Distillation

    Full text link
    As an emerging secure learning paradigm in leveraging cross-agency private data, vertical federated learning (VFL) is expected to improve advertising models by enabling the joint learning of complementary user attributes privately owned by the advertiser and the publisher. However, there are two key challenges in applying it to advertising systems: a) the limited scale of labeled overlapping samples, and b) the high cost of real-time cross-agency serving. In this paper, we propose a semi-supervised split distillation framework VFed-SSD to alleviate the two limitations. We identify that: i) there are massive unlabeled overlapped data available in advertising systems, and ii) we can keep a balance between model performance and inference cost by decomposing the federated model. Specifically, we develop a self-supervised task Matched Pair Detection (MPD) to exploit the vertically partitioned unlabeled data and propose the Split Knowledge Distillation (SplitKD) schema to avoid cross-agency serving. Empirical studies on three industrial datasets exhibit the effectiveness of our methods, with the median AUC over all datasets improved by 0.86% and 2.6% in the local deployment mode and the federated deployment mode respectively. Overall, our framework provides an efficient federation-enhanced solution for real-time display advertising with minimal deploying cost and significant performance lift.Comment: Accepted to the Trustworthy Federated Learning workshop of IJCAI2022 (FL-IJCAI22). 6 pages, 3 figures, 3 tables Old title: Semi-Supervised Cross-Silo Advertising with Partial Knowledge Transfe
    corecore