92 research outputs found

    Adapting the Hill estimator to distributed inference:dealing with the bias

    Get PDF
    The distributed Hill estimator is a divide-and-conquer algorithm for estimating the extreme value index when data are stored in multiple machines. In applications, estimates based on the distributed Hill estimator can be sensitive to the choice of the number of the exceedance ratios used in each machine. Even when choosing the number at a low level, a high asymptotic bias may arise. We overcome this potential drawback by designing a bias correction procedure for the distributed Hill estimator, which adheres to the setup of distributed inference. The asymptotically unbiased distributed estimator we obtained, on the one hand, is applicable to distributed stored data, on the other hand, inherits all known advantages of bias correction methods in extreme value statistics

    Distributed Inference for Tail Risk

    Full text link
    For measuring tail risk with scarce extreme events, extreme value analysis is often invoked as the statistical tool to extrapolate to the tail of a distribution. The presence of large datasets benefits tail risk analysis by providing more observations for conducting extreme value analysis. However, large datasets can be stored distributedly preventing the possibility of directly analyzing them. In this paper, we introduce a comprehensive set of tools for examining the asymptotic behavior of tail empirical and quantile processes in the setting where data is distributed across multiple sources, for instance, when data are stored on multiple machines. Utilizing these tools, one can establish the oracle property for most distributed estimators in extreme value statistics in a straightforward way. The main theoretical challenge arises when the number of machines diverges to infinity. The number of machines resembles the role of dimensionality in high dimensional statistics. We provide various examples to demonstrate the practicality and value of our proposed toolkit

    Estimating Extreme Value Index by Subsampling for Massive Datasets with Heavy-Tailed Distributions

    Full text link
    Modern statistical analyses often encounter datasets with massive sizes and heavy-tailed distributions. For datasets with massive sizes, traditional estimation methods can hardly be used to estimate the extreme value index directly. To address the issue, we propose here a subsampling-based method. Specifically, multiple subsamples are drawn from the whole dataset by using the technique of simple random subsampling with replacement. Based on each subsample, an approximate maximum likelihood estimator can be computed. The resulting estimators are then averaged to form a more accurate one. Under appropriate regularity conditions, we show theoretically that the proposed estimator is consistent and asymptotically normal. With the help of the estimated extreme value index, a normal range can be established for a heavy-tailed random variable. Observations that fall outside the range should be treated as suspected records and can be practically regarded as outliers. Extensive simulation experiments are provided to demonstrate the promising performance of our method. A real data analysis is also presented for illustration purpose

    Llam-Mdcnet for Detecting Remote Sensing Images of Dead Tree Clusters

    Get PDF
    Clusters of dead trees are forest fires-prone. To maintain ecological balance and realize its protection, timely detection of dead trees in forest remote sensing images using existing computer vision methods is of great significance. Remote sensing images captured by Unmanned aerial vehicles (UAVs) typically have several issues, e.g., mixed distribution of adjacent but different tree classes, interference of redundant information, and high differences in scales of dead tree clusters, making the detection of dead tree clusters much more challenging. Therefore, based on the Multipath dense composite network (MDCN), an object detection method called LLAM-MDCNet is proposed in this paper. First, a feature extraction network called Multipath dense composite network is designed. The network\u27s multipath structure can substantially increase the extraction of underlying and semantic features to enhance its extraction capability for rich-information regions. Following that, in the row, column, and diagonal directions, the Longitude Latitude Attention Mechanism (LLAM) is presented and incorporated into the feature extraction network. The multi-directional LLAM facilitates the suppression of irrelevant and redundant information and improves the representation of high-level semantic feature information. Lastly, an AugFPN is employed for down-sampling, yielding a more comprehensive representation of image features with the combination of low-level texture features and high-level semantic information. Consequently, the network\u27s detection effect for dead tree cluster targets with high-scale differences is improved. Furthermore, we make the collected high-quality aerial dead tree cluster dataset containing 19,517 images shot by drones publicly available for other researchers to improve the work in this paper. Our proposed method achieved 87.25% mAP with an FPS of 66 on our dataset, demonstrating the effectiveness of the LLAM-MDCNet for detecting dead tree cluster targets in forest remote sensing images

    MDAM-DRNet: Dual Channel Residual Network with Multi-Directional Attention Mechanism in Strawberry Leaf Diseases Detection

    Get PDF
    The growth of strawberry plants is affected by a variety of strawberry leaf diseases. Yet, due to the complexity of these diseases\u27 spots in terms of color and texture, their manual identification requires much time and energy. Developing a more efficient identification method could be imperative for improving the yield and quality of strawberry crops. To that end, here we proposed a detection framework for strawberry leaf diseases based on a dual-channel residual network with a multi-directional attention mechanism (MDAM-DRNet). (1) In order to fully extract the color features from images of diseased strawberry leaves, this paper constructed a color feature path at the front end of the network. The color feature information in the image was then extracted mainly through a color correlogram. (2) Likewise, to fully extract the texture features from images, a texture feature path at the front end of the network was built; it mainly extracts texture feature information by using an area compensation rotation invariant local binary pattern (ACRI-LBP). (3) To enhance the model\u27s ability to extract detailed features, for the main frame, this paper proposed a multidirectional attention mechanism (MDAM). This MDAM can allocate weights in the horizontal, vertical, and diagonal directions, thereby reducing the loss of feature information. Finally, in order to solve the problems of gradient disappearance in the network, the ELU activation function was used in the main frame. Experiments were then carried out using a database we compiled. According to the results, the highest recognition accuracy by the network used in this paper for six types of strawberry leaf diseases and normal leaves is 95.79%, with an F1 score of 95.77%. This proves the introduced method is effective at detecting strawberry leaf diseases

    DCCAM-MRNet: Mixed Residual Connection Network with Dilated Convolution and Coordinate Attention Mechanism for Tomato Disease Identification

    Get PDF
    Tomato is an important and fragile crop. During the course of its development, it is frequently contaminated with bacteria or viruses. Tomato leaf diseases may be detected quickly and accurately, resulting in increased productivity and quality. Because of the intricate development environment of tomatoes and their inconspicuous disease spot features and small spot area, present machine vision approaches fail to reliably recognize tomato leaves. As a result, this research proposes a novel paradigm for detecting tomato leaf disease. The INLM (integration nonlocal means) filtering algorithm, for example, decreases the interference of surrounding noise on the features. Then, utilizing ResNeXt50 as the backbone, we create DCCAM-MRNet, a novel tomato image recognition network. Dilated Convolution (DC) was employed in STAGE 1 of the DCCAM-MRNet to extend the network\u27s perceptual area and locate the scattered disease spots on tomato leaves. The coordinate attention (CA) mechanism is then introduced to record cross-channel information and direction- and position-sensitive data, allowing the network to more accurately detect localized tomato disease spots. Finally, we offer a mixed residual connection (MRC) technique that combines residual block (RS-Block) and transformed residual block (TR-Block) (TRS-Block). This strategy can increase the network\u27s accuracy while also reducing its size. The DCCAM-classification MRNet\u27s accuracy is 94.3 percent, which is higher than the existing network, and the number of parameters is 0.11 M lesser than the backbone network ResNeXt50, according to the experimental results. As a result, combining INLM and DCCAM-MRNet to identify tomato diseases is a successful strategy

    MDAM-DRNet: Dual Channel Residual Network with Multi-Directional Attention Mechanism in Strawberry Leaf Diseases Detection

    Get PDF
    The growth of strawberry plants is affected by a variety of strawberry leaf diseases. Yet, due to the complexity of these diseases\u27 spots in terms of color and texture, their manual identification requires much time and energy. Developing a more efficient identification method could be imperative for improving the yield and quality of strawberry crops. To that end, here we proposed a detection framework for strawberry leaf diseases based on a dual-channel residual network with a multi-directional attention mechanism (MDAM-DRNet). (1) In order to fully extract the color features from images of diseased strawberry leaves, this paper constructed a color feature path at the front end of the network. The color feature information in the image was then extracted mainly through a color correlogram. (2) Likewise, to fully extract the texture features from images, a texture feature path at the front end of the network was built; it mainly extracts texture feature information by using an area compensation rotation invariant local binary pattern (ACRI-LBP). (3) To enhance the model\u27s ability to extract detailed features, for the main frame, this paper proposed a multidirectional attention mechanism (MDAM). This MDAM can allocate weights in the horizontal, vertical, and diagonal directions, thereby reducing the loss of feature information. Finally, in order to solve the problems of gradient disappearance in the network, the ELU activation function was used in the main frame. Experiments were then carried out using a database we compiled. According to the results, the highest recognition accuracy by the network used in this paper for six types of strawberry leaf diseases and normal leaves is 95.79%, with an F1 score of 95.77%. This proves the introduced method is effective at detecting strawberry leaf diseases

    BC-DUnet-Based Segmentation of Fine Cracks in Bridges under a Complex Background

    Get PDF
    Crack is the external expression form of potential safety risks in bridge construction. Currently, automatic detection and segmentation of bridge cracks remains the top priority of civil engineers. With the development of image segmentation techniques based on convolutional neural networks, new opportunities emerge in bridge crack detection. Traditional bridge crack detection methods are vulnerable to complex background and small cracks, which is difficult to achieve effective segmentation. This study presents a bridge crack segmentation method based on a densely connected U-Net network (BC-DUnet) with a background elimination module and cross-attention mechanism. First, a dense connected feature extraction model (DCFEM) integrating the advantages of DenseNet is proposed, which can effectively enhance the main feature information of small cracks. Second, the background elimination module (BEM) is proposed, which can filter the excess information by assigning different weights to retain the main feature information of the crack. Finally, a cross-attention mechanism (CAM) is proposed to enhance the capture of long-term dependent information and further improve the pixel-level representation of the model. Finally, 98.18% of the Pixel Accuracy was obtained by comparing experiments with traditional networks such as FCN and Unet, and the IOU value was increased by 14.12% and 4.04% over FCN and Unet, respectively. In our non-traditional networks such as HU-ResNet and F U N-4s, SAM-DUnet has better and higher accuracy and generalization is not prone to overfitting. The BC-DUnet network proposed here can eliminate the influence of complex background on the segmentation accuracy of bridge cracks, improve the detection efficiency of bridge cracks, reduce the detection cost, and have practical application value

    MPC-STANet: Alzheimer’s Disease Recognition Method based on Multiple Phantom Convolution and Spatial Transformation Attention Mechanism

    Get PDF
    Alzheimer\u27s disease (AD) is a progressive neurodegenerative disease with insidious and irreversible onset. The recognition of the disease stage of AD and the administration of effective interventional treatment are important to slow down and control the progression of the disease. However, due to the unbalanced distribution of the acquired data volume, the problem that the features change inconspicuously in different disease stages of AD, and the scattered and narrow areas of the feature areas (hippocampal region, medial temporal lobe, etc.), the effective recognition of AD remains a critical unmet need. Therefore, we first employ class-balancing operation using data expansion and Synthetic Minority Oversampling Technique (SMOTE) to avoid the AD MRI dataset being affected by classification imbalance in the training. Subsequently, a recognition network based on Multi-Phantom Convolution (MPC) and Space Conversion Attention Mechanism (MPC-STANet) with ResNet50 as the backbone network is proposed for the recognition of the disease stages of AD. In this study, we propose a Multi-Phantom Convolution in the way of convolution according to the channel direction and integrate it with the average pooling layer into two basic blocks of ResNet50: Conv Block and Identity Block to propose the Multi-Phantom Residual Block (MPRB) including Multi-Conv Block and Multi-Identity Block to better recognize the scattered and tiny disease features of Alzheimer\u27s disease. Meanwhile, the weight coefficients are extracted from both vertical and horizontal directions using the Space Conversion Attention Mechanism (SCAM) to better recognize subtle structural changes in the AD MRI images. The experimental results show that our proposed method achieves an average recognition accuracy of 96.25%, F1 score of 95%, and mAP of 93%, and the number of parameters is only 1.69 M more than ResNet50
    • …
    corecore