5,786 research outputs found
High Order Asymptotic Preserving DG-IMEX Schemes for Discrete-Velocity Kinetic Equations in a Diffusive Scaling
In this paper, we develop a family of high order asymptotic preserving
schemes for some discrete-velocity kinetic equations under a diffusive scaling,
that in the asymptotic limit lead to macroscopic models such as the heat
equation, the porous media equation, the advection-diffusion equation, and the
viscous Burgers equation. Our approach is based on the micro-macro
reformulation of the kinetic equation which involves a natural decomposition of
the equation to the equilibrium and non-equilibrium parts. To achieve high
order accuracy and uniform stability as well as to capture the correct
asymptotic limit, two new ingredients are employed in the proposed methods:
discontinuous Galerkin spatial discretization of arbitrary order of accuracy
with suitable numerical fluxes; high order globally stiffly accurate
implicit-explicit Runge-Kutta scheme in time equipped with a properly chosen
implicit-explicit strategy. Formal asymptotic analysis shows that the proposed
scheme in the limit of epsilon -> 0 is an explicit, consistent and high order
discretization for the limiting equation. Numerical results are presented to
demonstrate the stability and high order accuracy of the proposed schemes
together with their performance in the limit
Quantitative spectroscopic analysis of heterogeneous mixtures: the correction of multiplicative effects caused by variations in physical properties of samples
Spectral measurements of complex heterogeneous types of mixture samples are often affected by significant multiplicative effects resulting from light scattering, due to physical variations (e.g. particle size and shape, sample packing and sample surface, etc.) inherent within the individual samples. Therefore, the separation of the spectral contributions due to variations in chemical compositions from those caused by physical variations is crucial to accurate quantitative spectroscopic analysis of heterogeneous samples. In this work, an improved strategy has been proposed to estimate the multiplicative parameters accounting for multiplicative effects in each measured spectrum, and hence mitigate the detrimental influence of multiplicative effects on the quantitative spectroscopic analysis of heterogeneous samples. The basic assumption of the proposed method is that light scattering due to physical variations has the same effects on the spectral contributions of each of the spectroscopically active chemical component in the same sample mixture. Based on this underlying assumption, the proposed method realizes the efficient estimation of the multiplicative parameters by solving a simple quadratic programming problem. The performance of the proposed method has been tested on two publicly available benchmark data sets (i.e. near-infrared total diffuse transmittance spectra of four-component suspension samples and near infrared spectral data of meat samples) and compared with some empirical approaches designed for the same purpose. It was found that the proposed method provided appreciable improvement in quantitative spectroscopic analysis of heterogeneous mixture samples. The study indicates that accurate quantitative spectroscopic analysis of heterogeneous mixture samples can be achieved through the combination of spectroscopic techniques with smart modeling methodology
Effect of Schisandra chinensis (Turcz) Schisandraceae seed extracts and cisplatin on cytotoxicity, genotoxicity and wound healing in MCF-7 cells
Purpose: Schisandra chinensis is a plant used in traditional Chinese and Russian medicine. An S. chinensis seed extract was tested for its ability to potentiate the effects of the anticancer agent cisplatin in MCF-7 breast cancer cells. Methods: S. chinensis seeds were extracted with ethanol and the ethanol was evaporated from the extracts to obtain an aqueous fraction of the S. chinensis seed extract (SCSE). MCF-7 cells were exposed to cisplatin alone or in combination with various concentrations of SCSE. The end points that were measured were cytotoxicity, genotoxicity, and wound healing. Results: The addition of 10 % SCSE increased the cytotoxicity of cisplatin by increasing MCF-7 cell death by 7 %. The combination of 20 % SCSE and cisplatin completely inhibited wound healing in MCF7 cells. SCSE alone did not induce DNA fragmentation in MCF-7 cells. Conclusion: Compounds from S. chinensis seed extracts may mitigate cancer cell proliferation and migration. Keywords: Schisandra chinensis, MCF-7 cells, Cytotoxicity, Genotoxicity, Wound healing, Cisplati
A WENO Algorithm of the Temperature and Ionization Profiles around a Point Source
We develop a numerical solver for radiative transfer problems based on the
weighted essentially nonoscillatory (WENO) scheme modified with anti-diffusive
flux corrections, in order to solve the temperature and ionization profiles
around a point source of photons in the reionization epoch. Algorithms for such
simulation must be able to handle the following two features: 1. the sharp
profiles of ionization and temperature at the ionizing front (I-front) and the
heating front (T-front), and 2. the fraction of neutral hydrogen within the
ionized sphere is extremely small due to the stiffness of the rate equations of
atom processes. The WENO scheme can properly handle these two features, as it
has been shown to have high order of accuracy and good convergence in capturing
discontinuities and complicated structures in fluid as well as to be
significantly superior over piecewise smooth solutions containing
discontinuities. With this algorithm, we show the time-dependence of the
preheated shell around a UV photon source. In the first stage the I-front and
T-front are coincident, and propagate with almost the speed of light. In later
stage, when the frequency spectrum of UV photons is hardened, the speeds of
propagation of the ionizing and heating fronts are both significantly less than
the speed of light, and the heating front is always beyond the ionizing front.
In the spherical shell between the I- and T-fronts, the IGM is heated, while
atoms keep almost neutral. The time scale of the preheated shell evolution is
dependent on the intensity of the photon source. We also find that the details
of the pre-heated shell and the distribution of neutral hydrogen remained in
the ionized sphere are actually sensitive to the parameters used. The WENO
algorithm can provide stable and robust solutions to study these details.Comment: 24 pages, 7 figures, accepted in New Astronom
- …