35 research outputs found

    Experimental Investigation on the Early Stage Spray Characteristics with Biodiesel and Diesel

    Full text link
    [EN] The early stage spray characteristics have a great impact on the secondary atomization progress, and thus affect the engine combustion and emission performances. The experimental investigation of the early stage spray behaviors with biodiesel and diesel was carried out by employing a laser-based Mie-scattering method. The results show that the spray tip penetration for biodiesel is higher than that for diesel at the early stage spray under the same injection pressure. Moreover, the early stage spray tip penetration can be longer under high injection pressures for two fuels. Besides, the early stage spray cone angle for biodiesel is narrower than that for diesel, and the spray cone angle is especially higher than biodiesel by 25.8% after start of injection time of 0.01ms. Furthermore, under the same injection condition, the difference of early stage spray area between diesel and biodiesel is not obvious, while the spray volume for biodiesel is larger than that for diesel, and also the spray volume can be enlarged by increasing injection pressure for both fuels.This work was supported by the contribution of China postdoctoral fund projects [grant number2013M530236]; The projects of ‘Six talent peak’ [grant number 2014-ZBZZ-014]; Research start-up found projects of Jiangsu university [grant number 13JDG104]; Natural Science Foundation of Jiangsu Province of China [grant number BK20150520];The Priority Academic Program Development of Jiangsu Higher Education Institutions [PAPD]Yu, S.; Yin, B.; Wen, S.; Li, X.; Jia, H.; Yu, J. (2017). Experimental Investigation on the Early Stage Spray Characteristics with Biodiesel and Diesel. En Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València. 473-479. https://doi.org/10.4995/ILASS2017.2017.4651OCS47347

    Satellite Content and Halo Mass of Galaxy Clusters: Comparison between Red-Sequence and Halo-based Optical Cluster Finders

    Full text link
    Cluster cosmology depends critically on how the optical clusters are selected from imaging surveys. We compare the conditional luminosity function (CLF) and weak lensing halo masses between two different cluster samples at fixed richness, detected within the same volume (0.1<z<0.340.1{<}z{<}0.34) using the red-sequence and halo-based methods. After calibrating our CLF deprojection method against mock galaxy samples, we measure the 3D CLFs by cross-correlating clusters with SDSS photometric galaxies. As expected, the CLFs of the red-sequence and halo-based finders exhibit redder and bluer populations, respectively. We also find significant shape discrepancies between the two CLFs at the faint end, where the red-sequence clusters show a strong deficit of faint galaxies but a bump at Mr20.5M_r{\sim}-20.5, while the halo-based clusters host an increasing number of blue satellites. By comparing the subsamples of clusters that have a match between the two catalogues to those without matches, we discover that the CLF shape depends sensitively on the cluster centroiding. However, the average weak lensing halo mass between the matched and non-matched clusters are roughly consistent with each other in either cluster sample. Since the colour preferences of the two cluster finders are almost orthogonal, such a consistency indicates that the scatter in the mass-richness relation of either cluster sample is close to random. Therefore, while the choice of how optical clusters are identified impacts the satellite content, our result suggests that it should not introduce strong systematics biases in cluster cosmology.Comment: 17 pages, 12 figures, 6 table

    Dark against luminous matter around isolated central galaxies: a comparative study between modern surveys and Illustris-TNG

    Full text link
    Based on independent shear measurements using the DECaLS/DR8 imaging data, we measure the weak lensing signals around isolated central galaxies (ICGs) from SDSS/DR7 at z0.1z\sim0.1. The projected stellar mass density profiles of surrounding satellite galaxies are further deduced, using photometric sources from the Hyper Suprime-Cam (HSC) survey (pDR3). The signals of ICGs ++ their extended stellar halos are taken from Wang et al.(2021). All measurements are compared with predictions by the Illustris-TNG300-1 simulation. We find, overall, a good agreement between observation and TNG300. In particular, a correction to the stellar mass of massive observed ICGs is applied based on the calibration of He et al.(2013), which brings a much better agreement with TNG300 predicted lensing signals at log10M/M>11.1\log_{10}M_\ast/M_\odot>11.1. In real observation, red ICGs are hosted by more massive dark matter halos, have more satellites and more extended stellar halos than blue ICGs at fixed stellar mass. However, in TNG300 there are more satellites around blue ICGs at fixed stellar mass, and the outer stellar halos of red and blue ICGs are similar. The stellar halos of TNG galaxies are more extended compared with real observed galaxies, especially for blue ICGs with log10M/M>10.8\log_{10}M_\ast/M_\odot>10.8. We find the same trend for TNG100 galaxies and for true halo central galaxies. The tensions between TNG and real galaxies might indicate that satellite disruptions are stronger in TNG. In both TNG300 and observation, satellites approximately trace the underlying dark matter distribution beyond 0.1R2000.1R_{200}, but the fraction of total stellar mass in TNG300 does not show the same radial distribution as real galaxies.Comment: 28 pages, 12 figure

    DESI Legacy Imaging Surveys Data Release 9: Cosmological Constraints from Galaxy Clustering and Weak Lensing using the Minimal Bias Model

    Full text link
    We present a tentative constraint on cosmological parameters Ωm\Omega_m and σ8\sigma_8 from a joint analysis of galaxy clustering and galaxy-galaxy lensing from DESI Legacy Imaging Surveys Data Release 9 (DR9), covering approximately 10000 square degrees and spanning the redshift range of 0.1 to 0.9. To study the dependence of cosmological parameters on lens redshift, we divide lens galaxies into seven approximately volume-limited samples, each with an equal width in photometric redshift. To retrieve the intrinsic projected correlation function wp(rp)w_{\rm p}(r_{\rm p}) from the lens samples, we employ a novel method to account for redshift uncertainties. Additionally, we measured the galaxy-galaxy lensing signal ΔΣ(rp)\Delta\Sigma(r_{\rm p}) for each lens sample, using source galaxies selected from the shear catalog by applying our \texttt{Fourier\_Quad} pipeline to DR9 images. We model these observables within the flat Λ\LambdaCDM framework, employing the minimal bias model. To ensure the reliability of the minimal bias model, we apply conservative scale cuts: rp>8r_{\rm p} > 8 and 12 h1Mpc12 ~h^{-1}{\rm Mpc}, for wp(rp)w_{\rm p}(r_{\rm p}) and ΔΣ(rp)\Delta\Sigma(r_{\rm p}), respectively. Our findings suggest a mild tendency that S8σ8Ωm/0.3S_8 \equiv \sigma_8 \sqrt{\Omega_m/0.3} increases with lens redshift, although this trend is only marginally significant. When we combine low redshift samples, the value of S8S_8 is determined to be 0.84±0.020.84 \pm 0.02, consistent with the Planck results but significantly higher than the 3×\times 2pt analysis by 2-5σ\sigma. Despite the fact that further refinements in measurements and modeling could improve the accuracy of our results, the consistency with standard values demonstrates the potential of our method for more precise and accurate cosmology in the future.Comment: slightly different with the published versio

    Halo Properties and Mass Functions of Groups/Clusters from the DESI Legacy Imaging Surveys DR9

    Full text link
    Based on a large group/cluster catalog recently constructed from the DESI Legacy Imaging Surveys DR9 using an extended halo-based group finder, we measure and model the group-galaxy weak lensing signals for groups/clusters in a few redshift bins within redshift range 0.1z<0.60.1 \leqslant z<0.6. Here, the background shear signals are obtained based on the DECaLS survey shape catalog derived with the \textsc{Fourier\_Quad} method. We divide the lens samples into 5 equispaced redshift bins and 7 mass bins, which allow us to probe the redshift and mass dependence of the lensing signals and hence the resulting halo properties. In addition to these sample selections, we have also checked the signals around different group centers, e.g., brightest central galaxy (BCG), luminosity weighted center and number weighted center. We use a lensing model that includes off-centering to describe the lensing signals we measure for all mass and redshift bins. The results demonstrate that our model predictions for the halo masses, bias and concentrations are stable and self-consistent among different samples for different group centers. Taking advantage of the very large and complete sample of groups/clusters, as well as the reliable estimation of their halo masses, we provide measurements of the cumulative halo mass functions up to redshift z=0.6z=0.6, with a mass precision at 0.030.090.03\sim0.09 dex.Comment: revised version submitted to Ap
    corecore