1,963 research outputs found
Deep Reinforcement Learning for Resource Allocation in V2V Communications
In this article, we develop a decentralized resource allocation mechanism for
vehicle-to-vehicle (V2V) communication systems based on deep reinforcement
learning. Each V2V link is considered as an agent, making its own decisions to
find optimal sub-band and power level for transmission. Since the proposed
method is decentralized, the global information is not required for each agent
to make its decisions, hence the transmission overhead is small. From the
simulation results, each agent can learn how to satisfy the V2V constraints
while minimizing the interference to vehicle-to-infrastructure (V2I)
communications
- …