62,624 research outputs found

    LLAGN and jet-scaling probed with the EVN

    Full text link
    Accreting black holes on all mass scales (from stellar to supermassive) appear to follow a nonlinear relation between X-ray luminosity, radio luminosity and BH mass, indicating that similar physical processes drive the central engines in X-ray binaries and active galactic nuclei (AGN). However, in recent years an increasing number of BH systems have been identified that do not fit into this scheme. These outliers may be the key to understand how BH systems are powered by accretion. Here we present results from EVN observations of a sample of low-luminosity AGN (LLAGN) with known mass that have unusually high radio powers when compared with their X-ray luminosity.Comment: Presented at the 11th EVN Symposium, Bordeaux, France, 2012 October 9-12. Six pages, including a figure and a table. Final, accepted versio

    Dynamic critical exponents of the Ising model with multispin interactions

    Full text link
    We revisit the short-time dynamics of 2D Ising model with three spin interactions in one direction and estimate the critical exponents z,z, θ,\theta, β\beta and ν\nu. Taking properly into account the symmetry of the Hamiltonian we obtain results completely different from those obtained by Wang et al.. For the dynamic exponent zz our result coincides with that of the 4-state Potts model in two dimensions. In addition, results for the static exponents ν\nu and β\beta agree with previous estimates obtained from finite size scaling combined with conformal invariance. Finally, for the new dynamic exponent θ\theta we find a negative and close to zero value, a result also expected for the 4-state Potts model according to Okano et al.Comment: 12 pages, 9 figures, corrected Abstract mistypes, corrected equation on page 4 (Parameter Q

    Computing the kk-coverage of a wireless network

    Full text link
    Coverage is one of the main quality of service of a wirelessnetwork. kk-coverage, that is to be covered simultaneously by kknetwork nodes, is synonym of reliability and numerous applicationssuch as multiple site MIMO features, or handovers. We introduce here anew algorithm for computing the kk-coverage of a wirelessnetwork. Our method is based on the observation that kk-coverage canbe interpreted as kk layers of 11-coverage, or simply coverage. Weuse simplicial homology to compute the network's topology and areduction algorithm to indentify the layers of 11-coverage. Weprovide figures and simulation results to illustrate our algorithm.Comment: Valuetools 2019, Mar 2019, Palma de Mallorca, Spain. 2019. arXiv admin note: text overlap with arXiv:1802.0844

    Highly-ordered graphene for two dimensional electronics

    Full text link
    With expanding interest in graphene-based electronics, it is crucial that high quality graphene films be grown. Sublimation of Si from the 4H-SiC(0001) Si-terminated) surface in ultrahigh vacuum is a demonstrated method to produce epitaxial graphene sheets on a semiconductor. In this paper we show that graphene grown from the SiC(0001ˉ)(000\bar{1}) (C-terminated) surface are of higher quality than those previously grown on SiC(0001). Graphene grown on the C-face can have structural domain sizes more than three times larger than those grown on the Si-face while at the same time reducing SiC substrate disorder from sublimation by an order of magnitude.Comment: Submitted to Appl. Phys. Let

    Analysing the Security of Google's implementation of OpenID Connect

    Get PDF
    Many millions of users routinely use their Google accounts to log in to relying party (RP) websites supporting the Google OpenID Connect service. OpenID Connect, a newly standardised single-sign-on protocol, builds an identity layer on top of the OAuth 2.0 protocol, which has itself been widely adopted to support identity management services. It adds identity management functionality to the OAuth 2.0 system and allows an RP to obtain assurances regarding the authenticity of an end user. A number of authors have analysed the security of the OAuth 2.0 protocol, but whether OpenID Connect is secure in practice remains an open question. We report on a large-scale practical study of Google's implementation of OpenID Connect, involving forensic examination of 103 RP websites which support its use for sign-in. Our study reveals serious vulnerabilities of a number of types, all of which allow an attacker to log in to an RP website as a victim user. Further examination suggests that these vulnerabilities are caused by a combination of Google's design of its OpenID Connect service and RP developers making design decisions which sacrifice security for simplicity of implementation. We also give practical recommendations for both RPs and OPs to help improve the security of real world OpenID Connect systems

    Dewetting-controlled binding of ligands to hydrophobic pockets

    Full text link
    We report on a combined atomistic molecular dynamics simulation and implicit solvent analysis of a generic hydrophobic pocket-ligand (host-guest) system. The approaching ligand induces complex wetting/dewetting transitions in the weakly solvated pocket. The transitions lead to bimodal solvent fluctuations which govern magnitude and range of the pocket-ligand attraction. A recently developed implicit water model, based on the minimization of a geometric functional, captures the sensitive aqueous interface response to the concave-convex pocket-ligand configuration semi-quantitatively

    The upstream magnetic field of collisionless GRB shocks: constraint by Fermi-LAT observations

    Full text link
    Long-lived >100 MeV emission has been a common feature of most Fermi-LAT detected gamma-ray bursts (GRBs), e.g., detected up to ~10^3s in long GRBs 080916C and 090902B and ~10^2s in short GRB 090510. This emission is consistent with being produced by synchrotron emission of electrons accelerated to high energy by the relativistic collisionless shock propagating into the weakly magnetized medium. Here we show that this high-energy afterglow emission constrains the preshock magnetic field to satisfy 1(n/1cc)^{9/8} mG<B<10^2(n/1cc)^{3/8}mG, where n is the preshock density, more stringent than the previous constraint by X-ray afterglow observations on day scale. This suggests that the preshock magnetic field is strongly amplified, most likely by the streaming of high energy shock accelerated particles.Comment: 9 pages, JCAP accepte
    corecore