62 research outputs found
Optimization of anthocyanin copigmentation formula of purple corn and its effect on the quality of purple corn
Objective: This study aimed to explore the copigmentation formula of purple corn anthocyanins. Methods: In this study, fructose, tannic acid, and pectin were used as co-pigmentation. The response surface method was used to optimize the co-pigmentation formula of purple corn anthocyanins, and the untreated purple corn was used as a control test. The anthocyanin components, color, texture, taste and antioxidant activity (DPPH free radical scavenging ability, ABTS free radical scavenging ability, and FRAP iron ion reducing ability) of purple corn after different treatments were determined. Results: 19% fructose, 0.07% tannic acid, and 1.9% pectin had the best copigmentation effect. Compared with the control group, the contents of cyanidin-3-O-glucoside, geranium-3-O-glucoside, and peony-3-O-glucoside in purple corn increased by 77.64%, 64.82%, and 54.75%, respectively. The total anthocyanin content increased by 67.98%. The L* value, b* value, and ΔE value of color decreased, while the a* value increased. Hardness, adhesiveness, and chewing type increased, while elasticity and cohesion decreased. The bitter, astringent, and astringent aftertastes differ slightly, as do the sour, sweet, salty, umami, bitter, and umami aftertastes. In the mass concentration range of 0.02~0.10 mg/mL, the DPPH free radical scavenging ability, ABTS free radical scavenging ability and FRAP iron ion reducing ability of purple corn anthocyanins were 39%~79%, 54%~74% and 27%~67%, respectively. Conclusion: The co-pigmentation effect of 19% fructose, 0.07% tannic acid, and 1.9% pectin on purple corn anthocyanins was the best
Exploring the supersymmetric U(1) U(1) model with dark matter, muon and mass limits
We study the low scale predictions of supersymmetric standard model extended
by symmetry, obtained from breaking via a
left-right supersymmetric model, imposing universal boundary conditions. Two
singlet Higgs fields are responsible for the radiative symmetry breaking, and a singlet fermion is introduced to
generate neutrino masses through inverse seesaw mechanism. The lightest
neutralino or sneutrino emerge as dark matter candidates, with different low
scale implications. We find that the composition of the neutralino LSP changes
considerably depending on the neutralino LSP mass, from roughly half
bino, half MSSM bino, to singlet higgsino, or completely dominated by MSSM
higgsino. The sneutrino LSP is statistically much less likely, and when it
occurs it is a 50-50 mixture of right-handed sneutrino and the scalar . Most of the solutions consistent with the relic density constraint survive
the XENON 1T exclusion curve for both LSP cases. We compare the two scenarios
and investigate parameter space points and find consistency with the muon
anomalous magnetic moment only at the edge of deviation from the
measured value. However, we find that the sneutrino LSP solutions could be
ruled out completely by strict reinforcement of the recent mass
bounds. We finally discuss collider prospects for testing the model
High-resolution vessel wall imaging for quantitatively and qualitatively evaluating in-stent stenosis of intracranial aneurysms
BackgroundIt is critical to accurately and noninvasively evaluate the stented parent artery of intracranial aneurysms (IAs) with endovascular treatment.ObjectiveTo investigate high-resolution vessel wall imaging (HR-VWI) for quantitative and qualitative evaluation of in-stent stenosis (ISS) in IAs treated with stent placement (SP).MethodsFifty-five patients (58 aneurysms) underwent HR-VWI, contrast-enhanced (CE)-HR-VWI, CE-MR angiography (MRA), time-of-flight (TOF)-MRA, and digital subtraction angiography (DSA) six months after SP, and the reliability of quantitative stent lumen measurements was evaluated by intraclass correlation coefficient (ICC) analysis. Agreement and correlation of quantitative evaluation were estimated by comparing the four MR imaging modalities with DSA. The diagnostic performance for >0%, ≥25%, and ≥50% of ISS degrees and overall diagnostic accuracy for the ISS degrees of the four MR imaging modalities were calculated to qualitative evaluation.ResultsThe reliability of CE-HR-VWI and HR-VWI for ISS quantitative measurements was excellent (ICC 0.955–0.989). The agreement and correlation of CE-HR-VWI, HR-VWI versus DSA for ISS quantitative measurements were better than those of CE-MRA and TOF-MRA (p < 0.05). The diagnostic performance for distinguishing the degree of ISS >0%, ≥25%, and ≥50% by CE-HR-VWI and HR-VWI was superior to CE-MRA and TOF-MRA, and their overall diagnostic accuracy was 96.55 and 94.83%, respectively. HR-VWI and CE-HR-VWI were not statistically significant in the quantitative and qualitative evaluation of ISS performance (p > 0.05).ConclusionHR-VWI and CE-HR-VWI have similar performance and value in the quantitative and qualitative evaluation of ISS, and HR-VWI without contrast media could be used as an ideal long-term follow-up approach after SP treatment for IAs
Effect of Ultrasonic Treatment on Vitis vinifera L. Cell Wall Pectin Components
In order to clarify the content and structural changes of different pectin fractions in grape cell walls under ultrasonic treatment, the grapes were treated with different ultrasonic time and ultrasonic power in this study, and the content of pectin fractions, composition of monosaccharides and structural changes of grape cell walls were analyzed by means of carbazole sulfuric acid method, PMP pre-column derivatization, high-performance liquid gel chromatography , scanning electron microscopy, Fourier transform infrared spectroscopy and circular dichroism. Results showed that the highest and the lowest contents in fresh grape cell walls were alkali-soluble pectin (NSP) and chelate pectin (CSP), respectively, and they were 27.41 mg/g AIR and 8.25 mg/g AIR. The total pectin decreased after ultrasonic treatments, in which the water-soluble pectin (WSP) increased and the CSP and NSP decreased. A total of six monosaccharides were detected in three pectins, and the monosaccharides of different pectin were not the same. The galactose and arabinose were high in WSP, the glucuronic acid was the most abundant of CSP and the rhamnose were the highest in NSP. After ultrasonic treatment, the contents of monosaccharides decreased, while the composition did not change, and the main chain structure of pectin was no change, but the linear structure and the degree of branch chain were changed. With the increase of ultrasonic times and powers, the molecular weight of different pectins declined gradually. And in the microstructure showed a more loose morphology. In addition, ultrasonic treatment had an effect on the structure and chain conformation of CSP and NSP, which made their maximum response values shift, and the effect of ultrasonic power was more significant. In conclusion, ultrasonic treatment could reduce the pectin and monosaccharide contents in grape cell walls, and affect the molecular linear structure and molecular chain conformation of pectin. These results can provide theoretical basis for the quality change of grape products under ultrasonic treatment
Bi-directional Mendelian randomization analysis provides evidence for the causal involvement of dysregulation of CXCL9, CCL11 and CASP8 in the pathogenesis of ulcerative colitis
Background and Aims Systemic inflammation is well recognised to be associated with ulcerative colitis [UC], but whether these effects are causal or consequential remains unclear. We aimed to define potential causal relationship of cytokine dysregulation with different tiers of evidence. Methods We first synthesised serum proteomic profiling data from two multicentred observational studies, in which a panel of systemic inflammatory proteins was analysed to examine their associations with UC risk. To further dissect observed associations, we then performed a bidirectional two-sample Mendelian randomisation [TSMR] analysis from both forward and reverse directions using five genome-wide association study [GWAS] summary level data for serum proteomic profiles and the largest GWAS of 28 738 European-ancestry individuals for UC risk. Results Pooled analysis of serum proteomic data identified 14 proteins to be associated with the risk of UC. Forward MR analysis using only cis-acting protein quantitative trait loci [cis-pQTLs] or trans-pQTLs further validated causal associations of two chemokines and the increased risk of UC: C-X-C motif chemokine ligand 9 [CXCL9] [OR 1.45, 95% CI 1.08, 1.95, p = 0.012] and C-C motif chemokine ligand 11 [CCL11] [OR 1.14, 95% CI 1.09, 1.18, p = 3.89 x 10(-10)]. Using both cis- and trans-acting pQTLs, an association of caspase-8 [CASP8] [OR 1.04, 95% CI 1.03, 1.05, p = 7.63 x 10(-19)] was additionally identified. Reverse MR did not find any influence of genetic predisposition to UC on any of these three inflammation proteins. Conclusion Pre-existing elevated levels of CXCL9, CCL11 and CASP8 may play a role in the pathogenesis of UC
Experimental Investigation of Acoustic Propagation Characteristics in a Fluid-Filled Polyethylene Pipeline
Fluid-filled polyethylene (PE) pipelines have a wide range of applications in, for example, water supply and gas distribution systems, and it is therefore important to understand the characteristics of acoustic propagation in such pipelines in order to detect and prevent pipe ruptures caused by vibration and noise. In this paper, using the appropriate wall parameters, the frequencies of normal waves in a fluid-filled PE pipeline are calculated, and the axial and radial dependences of sound fields are analyzed. An experimental system for investigating acoustic propagation in a fluid-filled PE pipeline is constructed and is used to verify the theoretical results. Both acoustic and mechanical excitation methods are used. According to the numerical calculation, the first-, second-, and third-order cutoff frequencies are 4.6, 10.4, and 16.3 kHz, which are close to the experimentally determined values of 4.7, 10.6, and 16 kHz. Sound above a cutoff frequency is able to propagate in the axial direction, whereas sound below this frequency is attenuated exponentially in the axial direction but can propagate along the wall in the form of vibrations. The results presented here can provide some basis for noise control in fluid-filled PE pipelines
Spatiotemporal Changes in the Geographic Imbalances between Crop Production and Farmland-Water Resources in China
Agricultural production is constrained by farmland and water resources, especially in China with limited per capita resources. Understanding of the geographic changes between national crop production and resource availability with the spatial shift of crop production has been limited in recent decades. To solve this issue, we quantified the changes in geographic relationships between crop production and farmland-water resources in China from 1990 to 2015 by a spatial imbalance measurement model. Results found a clear spatial concentration trend of crop production in China, which increased the pressure on the limited farmland and water resources in the main production areas. The geographic imbalances between the total production of crops and farmland resources (∑SMI_PF) alleviated slightly, whereas that of water resources (∑SMI_PW) increased by 9.12%. The rice production moved toward the north of the country with less water but abundant farmland resources, which led to a decrease of 1.34% in ∑SMI_PF and an increase of 14.20% in ∑SMI_PW. The shift of wheat production to the south was conducive to alleviating the pressure on water resources, but the production concentration still increased the demand for farmland and water resources, resulting in an increase in ∑SMI_PF and ∑SMI_PW by 39.96% and 10.01%, respectively. Of the five crops, adjustments to the spatial distribution of corn production had the most significant effect on reducing pressure on farmland and water resources and ∑SMI_PF and ∑SMI_PW decreased by 11.23% and 1.43%, respectively. Our results provided a reference for adjustments in crop production distribution and for policy formulation to sustainably utilize farmland and water resources
Spatiotemporal Changes in the Geographic Imbalances between Crop Production and Farmland-Water Resources in China
Agricultural production is constrained by farmland and water resources, especially in China with limited per capita resources. Understanding of the geographic changes between national crop production and resource availability with the spatial shift of crop production has been limited in recent decades. To solve this issue, we quantified the changes in geographic relationships between crop production and farmland-water resources in China from 1990 to 2015 by a spatial imbalance measurement model. Results found a clear spatial concentration trend of crop production in China, which increased the pressure on the limited farmland and water resources in the main production areas. The geographic imbalances between the total production of crops and farmland resources (∑SMI_PF) alleviated slightly, whereas that of water resources (∑SMI_PW) increased by 9.12%. The rice production moved toward the north of the country with less water but abundant farmland resources, which led to a decrease of 1.34% in ∑SMI_PF and an increase of 14.20% in ∑SMI_PW. The shift of wheat production to the south was conducive to alleviating the pressure on water resources, but the production concentration still increased the demand for farmland and water resources, resulting in an increase in ∑SMI_PF and ∑SMI_PW by 39.96% and 10.01%, respectively. Of the five crops, adjustments to the spatial distribution of corn production had the most significant effect on reducing pressure on farmland and water resources and ∑SMI_PF and ∑SMI_PW decreased by 11.23% and 1.43%, respectively. Our results provided a reference for adjustments in crop production distribution and for policy formulation to sustainably utilize farmland and water resources
Prediction of Acoustic Energy Radiated by Bubble Produced by Raindrops
Underwater noise produced by rainfall is an important part of underwater ambient noise. The bubbles produced by raindrops are the main noise source of underwater noise. Generally, the sound pressure signal of individual bubbles is easily contaminated by tank reverberation, hydrodynamic flow, and laboratory electrical noise. In order to solve this problem, this study proposes a method for calculating the acoustic energy of the bubble produced by a raindrop when the latter falls onto a plane water surface. For this purpose, a series of experiments was conducted in a 15 m × 9 m × 6 m reverberation tank filled with tap water. The bubble produced by a raindrop behaves as a simple exponentially damped sinusoidal oscillator. Based on the dipole radiation pattern, a formula was derived to predict the sound energy of these bubbles. The damping coefficient of the bubble formed by raindrops is found to differ appreciably from the empirical value of the bubble formed by other mechanisms. The resonance frequency of the bubbles is found to decrease with time. It is due to the rapid increase in the distance between the bubble and the interface. Then, the formula is optimized by using these two improved variables. The experimental results agree well with the theoretical derivation
Effect of Freeze-Thaw Pretreatment on Extraction Yield and Antioxidant Bioactivity of Corn Carotenoids (Lutein and Zeaxanthin)
As a green and low-energy pretreatment method, the effect of freeze-thaw (FT) pretreatment on extraction yield and antioxidant bioactivity of carotenoids of the corn gluten meal (CGM) were evaluated in this study. The CGM particles ruptured in FT treatment due to the repeated damage caused by FT to CGM particles. The carotenoid compounds of pretreated CGM were lutein, zeaxanthin, β-carotene, and cryptoxanthin. Among them, the major carotenoids are lutein and zeaxanthin. The optimized FT pretreatment conditions included freezing temperature of −20°C, moisture content of 100%, and 2 cycles. An increase in the yield of lutein and zeaxanthin was observed in the range of 2.23–16.39 µg/g and 4.66–36.3 µg/g as a result of pretreatment as against 1.17 and 2.52 µg/g of the untreated sample, respectively. Moreover, the release of lutein and zeaxanthin from CGM was facilitated by FT pretreatment and increased the antioxidant activity of the carotenoids
- …