13,543 research outputs found

    Interchange reconnection associated with a confined filament eruption: Implications for the source of transient cold-dense plasma in solar winds

    Full text link
    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are well known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancellations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly-formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly-formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind

    Middle Neoproterozoic syn-rifting volcanic rocks in Guangfeng, South China: petrogenesis and tectonic significance

    Get PDF
    Middle Neoproterozoic igneous rocks are widespread in South China, but their petrogenesis and tectonic implications are still highly controversial. The Guangfeng middle Neoproterozoic volcani-sedimentary succession was developed on a rare Sibaoan metamorphic basement (the Tianli Schists) inthe southeastern Yangtze Block, South China. This paper reports geochronological, geochemical and Nd isotopic data for the volcanic rocks in this succession. The volcanic rocks consist of alkaline basalts, andesites and peraluminous rhyolites. SHRIMP U-Pb zircon age determinations indicate that they were erupted at 827+- 14 Ma, coeval with a widespread episode of anorogenic magmatism in South China. Despite showing Nb-Ta depletion relative to La and Th, the alkaline basalts are characterized by highly positive eNd(T) values (+3.1 to +6.0), relatively high TiO2 and Nb contents and high Zr/Y and super-chondritic Nb/Ta ratios, suggesting their derivation from a slab melt-metasomatized subcontinental lithospheric mantle source in an intracontinental rifting setting. The andesites have significantly negative eNd(T) values (-9.3 to-11.1) and a wide range of SiO2 contents (57.6-65.6 %).They were likely generated by the mixing of fractionated basaltic melts with felsic melts derived from the Archaean metasedimentary rocks in the middle to lower crust. The rhyolites are highly siliceous and peraluminous. They are characterized by depletion in Nb, Ta, Sr, P and Ti and relatively high eNd(T)values (-3.0 to -4.8), broadly similar to those of the adjacent c. 820 Ma peraluminous granitoids derived from the Mesoproterozoic to earliest Neoproterozoic sedimentary source at relatively shallowlevels. We conclude that the Guangfeng volcanic suite is a magmatic response of variant levels of continental lithosphere (including lithospheric mantle and the lower-middle to upper crust) to the middle Neoproterozoic intracontinental rifting possibly caused by mantle plume activity

    Re-Study on the wave functions of Υ(nS)\Upsilon(nS) states in LFQM and the radiative decays of Υ(nS)ηb+γ\Upsilon(nS)\to \eta_b+\gamma

    Full text link
    The Light-front quark model (LFQM) has been applied to calculate the transition matrix elements of heavy hadron decays. However, it is noted that using the traditional wave functions of the LFQM given in literature, the theoretically determined decay constants of the Υ(nS)\Upsilon(nS) obviously contradict to the data. It implies that the wave functions must be modified. Keeping the orthogonality among the nSnS states and fitting their decay constants we obtain a series of the wave functions for Υ(nS)\Upsilon(nS). Based on these wave functions and by analogy to the hydrogen atom, we suggest a modified analytical form for the Υ(nS)\Upsilon(nS) wave functions. By use of the modified wave functions, the obtained decay constants are close to the experimental data. Then we calculate the rates of radiative decays of Υ(nS)ηb+γ\Upsilon(nS)\to \eta_b+\gamma. Our predictions are consistent with the experimental data on decays Υ(3S)ηb+γ\Upsilon(3S)\to \eta_b+\gamma within the theoretical and experimental errors.Comment: 10 pages, 2 figures, 1 table. Typos corrected and more discussions added. accepted for publication in Physical Review

    Competing electronic orders on Kagome lattices at van Hove filling

    Full text link
    The electronic orders in Hubbard models on a Kagome lattice at van Hove filling are of intense current interest and debate. We study this issue using the singular-mode functional renormalization group theory. We discover a rich variety of electronic instabilities under short range interactions. With increasing on-site repulsion UU, the system develops successively ferromagnetism, intra unit-cell antiferromagnetism, and charge bond order. With nearest-neighbor Coulomb interaction VV alone (U=0), the system develops intra-unit-cell charge density wave order for small VV, s-wave superconductivity for moderate VV, and the charge density wave order appears again for even larger VV. With both UU and VV, we also find spin bond order and chiral dx2y2+idxyd_{x^2 - y^2} + i d_{xy} superconductivity in some particular regimes of the phase diagram. We find that the s-wave superconductivity is a result of charge density wave fluctuations and the squared logarithmic divergence in the pairing susceptibility. On the other hand, the d-wave superconductivity follows from bond order fluctuations that avoid the matrix element effect. The phase diagram is vastly different from that in honeycomb lattices because of the geometrical frustration in the Kagome lattice.Comment: 8 pages with 9 color figure
    corecore