1,732 research outputs found

    Laser-induced thermal acoustics (LITA) signals from finite beams

    Get PDF
    Laser-induced thermal acoustics (LITA) is a four-wave mixing technique that may be employed to measure sound speeds, transport properties, velocities, and susceptibilities of fluids. It is particularly effective in high-pressure gases (>1 bar). An analytical expression for LITA signals is derived by the use of linearized equations of hydrodynamics and light scattering. This analysis, which includes full finite-beam-size effects and the optoacoustic effects of thermalization and electrostriction, predicts the amplitude and the time history of narrow-band time-resolved LITA and broadband spectrally resolved (multiplex) LITA signals. The time behavior of the detected LITA signal depends significantly on the detection solid angle, with implications for the measurement of diffusivities by the use of LITA and the proper physical picture of LITA scattering. This and other elements of the physics of LITA that emerge from the analysis are discussed. Theoretical signals are compared with experimental LITA data

    Explosive synchronization in weighted complex networks

    Get PDF
    The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. Given a set of phase oscillators networking with a generic wiring of connections and displaying a generic frequency distribution, we show how combining dynamical local information on frequency mismatches and global information on the graph topology suggests a judicious and yet practical weighting procedure which is able to induce and enhance explosive, irreversible, transitions to synchronization. We report extensive numerical and analytical evidence of the validity and scalability of such a procedure for different initial frequency distributions, for both homogeneous and heterogeneous networks, as well as for both linear and non linear weighting functions. We furthermore report on the possibility of parametrically controlling the width and extent of the hysteretic region of coexistence of the unsynchronized and synchronized states

    Relay synchronization in multiplex networks

    Full text link
    Relay (or remote) synchronization between two not directly connected oscillators in a network is an important feature allowing distant coordination. In this work, we report a systematic study of this phenomenon in multiplex networks, where inter-layer synchronization occurs between distant layers mediated by a relay layer that acts as a transmitter. We show that this transmission can be extended to higher order relay configurations, provided symmetry conditions are preserved. By first order perturbative analysis, we identify the dynamical and topological dependencies of relay synchronization in a multiplex. We find that the relay synchronization threshold is considerably reduced in a multiplex configuration, and that such synchronous state is mostly supported by the lower degree nodes of the outer layers, while hubs can be de-multiplexed without affecting overall coherence. Finally, we experimentally validated the analytical and numerical findings by means of a multiplex of three layers of electronic circuits.the analytical and numerical findings by means of a multiplex of three layers of electronic circuits

    Synchronization centrality and explosive synchronization in complex networks

    Full text link
    Synchronization of networked oscillators is known to depend fundamentally on the interplay between the dynamics of the graph's units and the microscopic arrangement of the network's structure. For non identical elements, the lack of quantitative tools has hampered so far a systematic study of the mechanisms behind such a collective behavior. We here propose an effective network whose topological properties reflect the interplay between the topology and dynamics of the original network. On that basis, we are able to introduce the "synchronization centrality", a measure which quantifies the role and importance of each network's node in the synchronization process. In particular, we use such a measure to assess the propensity of a graph to synchronize explosively, thus indicating a unified framework for most of the different models proposed so far for such an irreversible transition. Taking advantage of the predicting power of this measure, we furthermore discuss a strategy to induce the explosive behavior in a generic network, by acting only upon a small fraction of its nodes

    Transient polarization dynamics in a CO2_2 laser

    Get PDF
    We study experimentally and theoretically the polarization alternation during the switch-on transient of a quasi-isotropic CO2_2 laser emitting on the fundamental mode. The observed transient dynamics is well reproduced by means of a model which provides a quantitative discrimination between the intrinsic asymmetry due to the kinetic coupling of molecules with different angular momenta, and the extrinsic anisotropies, due to a tilted intracavity window. Furthermore, the experiment provides a numerical assignment for the decay rate of the coherence term for a CO2_2 laser.Comment: 14 pages, 6 figures, submitted to Opt. Com
    corecore