2,479 research outputs found

    Selective Logging Shows No Impact on the Dietary Breadth of a Generalist Bat Species: The Fawn Leaf-Nosed Bat (Hipposideros cervinus)

    Get PDF
    Logging activities degrade forest habitats across large areas of the tropics, but the impacts on trophic interactions that underpin forest ecosystems are poorly understood. DNA metabarcoding provides an invaluable tool to investigate such interactions, allowing analysis at a far greater scale and resolution than has previously been possible. We analysed the diet of the insectivorous fawn leaf-nosed bat Hipposideros cervinus across a forest disturbance gradient in Borneo, using a dataset of ecological interactions from an unprecedented number of bat-derived faecal samples. Bats predominantly consumed insects from the orders Lepidoptera, Diptera, Blattodea and Coleoptera, and the taxonomic composition of their diet remained relatively consistent across sites regardless of logging disturbance. There was little difference in the richness of prey consumed per-bat in each logging treatment, indicating potential resilience of this species to habitat degradation. In fact, bats consumed a high richness of prey items, and intensive sampling is needed to reliably compare feeding ecology over multiple sites. Multiple bioinformatic parameters were used, to assess how they altered our perception of sampling completeness. While parameter choice altered estimates of completeness, a very high sampling effort was always required to detect the entire prey community

    Reconstructions of deltaic environments from Holocene palynological records in the Volga delta, northern Caspian Sea

    Get PDF
    This article was made available through open access by the Brunel Open Access Publishing Fund.New palynological and ostracod data are presented from the Holocene Volga delta, obtained from short cores and surface samples collected in the Damchik region, near Astrakhan, Russian Federation in the northern Caspian Sea. Four phases of delta deposition are recognized and constrained by accelerated mass spectrometry (AMS) radiocarbon ages. Palynological records show that erosive channels, dunes (Baer hills) and inter-dune lakes were present during the period 11,500–8900 cal. BP at the time of the Mangyshlak Caspian lowstand. The period 8900–3770 cal. BP was characterized regionally by extensive steppe vegetation, with forest present at times with warmer, more humid climates, and with halophytic and xerophytic vegetation present at times of drought. The period 3770–2080 cal. BP was a time of active delta deposition, with forest or woodland close to the delta, indicating relatively warm and humid climates and variable Caspian Sea levels. From 2080 cal. BP to the present-day, aquatic pollen is frequent in highstand intervals and herbaceous pollen and fungal hyphae frequent in lowstand intervals. Soils and incised valley sediments are associated with the regional Derbent regression and may be time-equivalent with the ‘Medieval Warm Period’. Fungal spores are an indicator of erosional or aeolian processes, whereas fungal hyphae are associated with soil formation. Freshwater algae, ostracods and dinocysts indicate mainly freshwater conditions during the Holocene with minor brackish influences. Dinocysts present include Spiniferites cruciformis, Caspidinium rugosum, Impagidinium caspienense and Pterocysta cruciformis, the latter a new record for the Caspian Sea. The Holocene Volga delta is a partial analogue for the much larger oil and gas bearing Mio-Pliocene palaeo-Volga delta.Funding for the data collection and field work was provided from the following sources: 1 – IGCP-UNESCO 2003–2008 (Project 481 CASPAGE, Dating Caspian Sea Level Change); 2 – NWO, Netherlands Science Foundation and RFFI, Russian Science Foundation 2005–2008 (Programme: ‘VHR Seismic Stratigraphy and Paleoecology of the Holocene Volga Delta’); and 3 – BP Exploration (Caspian Sea) Sea Ltd. (Azeri-Chirag-Gunashli) 2005–2008 (‘Unravelling the Small-Scale Stratigraphy and Sediment Dynamics of the Modern Volga Delta Using VHR Marine Geophysics’). The palynological work was funded jointly by BP Exploration (Caspian Sea) Ltd., Delft University of Technology and KrA Stratigraphic Ltd. Ostracod analyses were funded by StrataData Ltd. and funding for two additional radiocarbon dates provided by Deltares

    Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.

    Get PDF
    Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology

    Multilevel Deconstruction of the In Vivo Behavior of Looped DNA-Protein Complexes

    Get PDF
    Protein-DNA complexes with loops play a fundamental role in a wide variety of cellular processes, ranging from the regulation of DNA transcription to telomere maintenance. As ubiquitous as they are, their precise in vivo properties and their integration into the cellular function still remain largely unexplored. Here, we present a multilevel approach that efficiently connects in both directions molecular properties with cell physiology and use it to characterize the molecular properties of the looped DNA-lac repressor complex while functioning in vivo. The properties we uncover include the presence of two representative conformations of the complex, the stabilization of one conformation by DNA architectural proteins, and precise values of the underlying twisting elastic constants and bending free energies. Incorporation of all this molecular information into gene-regulation models reveals an unprecedented versatility of looped DNA-protein complexes at shaping the properties of gene expression.Comment: Open Access article available at http://www.plosone.org/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1371%2Fjournal.pone.000035

    Sexual Size Dimorphism and Body Condition in the Australasian Gannet

    Get PDF
    Funding: The research was financially supported by the Holsworth Wildlife Research Endowment. Acknowledgments We thank the Victorian Marine Science Consortium, Sea All Dolphin Swim, Parks Victoria, and the Point Danger Management Committee for logistical support. We are grateful for the assistance of the many field volunteers involved in the study.Peer reviewedPublisher PD

    Improved measurement of the K+->pi+nu(nu)over-bar branching ratio

    Get PDF
    An additional event near the upper kinematic limit for K+-->pi(+)nu(nu) over bar has been observed by experiment E949 at Brookhaven National Laboratory. Combining previously reported and new data, the branching ratio is B(K+-->pi(+)nu(nu) over bar)=(1.47(-0.89)(+1.30))x10(-10) based on three events observed in the pion momentum region 211<P<229 MeV/c. At the measured central value of the branching ratio, the additional event had a signal-to-background ratio of 0.9

    The assertive cardiac care trial: A randomised controlled trial of a coproduced assertive cardiac care intervention to reduce absolute cardiovascular disease risk in people with severe mental illness in the primary care setting

    Get PDF
    BACKGROUND: Cardiovascular disease (CVD) accounts for 40% of the excess mortality identified in people with severe mental illness (SMI). Modifiable CVD risk factors are higher and can be exacerbated by the cardiometabolic impact of psychotropic medications. People with SMI frequently attend primary care presenting a valuable opportunity for early identification, prevention and management of cardiovascular health. The ACCT Healthy Hearts Study will test a coproduced, nurse-led intervention delivered with general practitioners to reduce absolute CVD risk (ACVDR) at 12 months compared with an active control group. METHODS/DESIGN: ACCT is a two group (intervention/active control) individually randomised (1:1) controlled trial (RCT). Assessments will be completed baseline (pre-randomisation), 6 months, and 12 months. The primary outcome is 5-year ACVDR measured at 12 months. Secondary outcomes include 6-month ACVDR; and blood pressure, lipids, HbA1c, BMI, quality of life, physical activity, motivation to change health behaviour, medication adherence, alcohol use and hospitalisation at 6 and 12 months. Linear mixed-effects regression will estimate mean difference between groups for primary and secondary continuous outcomes. Economic cost-consequences analysis will be conducted using quality of life and health resource use information and routinely collected government health service use and medication data. A parallel process evaluation will investigate implementation of the intervention, uptake and outcomes. DISCUSSION: ACCT will deliver a coproduced and person-centred, guideline level cardiovascular primary care intervention to a high need population with SMI. If successful, the intervention could lead to the reduction of the mortality gap and increase opportunities for meaningful social and economic participation. Trial registration ANZCTR Trial number: ACTRN12619001112156

    The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae

    Get PDF
    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria
    corecore