2,579 research outputs found
Recommended from our members
Geology, geochemistry, and mineral potential of cretaceous and tertiary plutons in the eastern part of the Soldier Mountains, Idaho
Angiotensin converting enzyme inhibitors do not increase the risk of poor outcomes in COVID-19 disease. A multi-centre observational study
Background and aims
Hypertension is associated with an increased risk of severe outcomes with COVID-19 disease. Angiotensin Converting Enzyme (ACE) inhibitors are widely used as a first line medication for the treatment of hypertension in the UK, although their use was suggested in early reports to increase the risk associated with SARS-CoV-2 infection.
Methods
A prospective cohort study of hospitalised patients with laboratory confirmed COVID-19 was conducted across three hospital sites with patients identified on the 9th April 2020. Demographic and other baseline data were extracted from electronic case records, and patients grouped depending on ACE inhibitor usage or not. The 60-day all-cause mortality and need for intubation compared.
Results
Of the 173 patients identified, 88 (50.8%) had hypertension. Of these 27 (30.7%) used ACE inhibitors. We did not find significant differences in 60-day all-cause mortality, the requirement for invasive ventilation or length of stay between our patient cohorts after adjusting for covariates.
Conclusion
This study contributes to the growing evidence supporting the continued use of ACE inhibitors in COVID-19 disease, although adequately powered randomised controlled trials will be needed to confirm effects
Does nosocomial SARS-CoV-2 infection result in increased 30-day mortality? A multi-centre observational study to identify risk factors for worse outcomes in COVID-19 disease
We aimed to determine whether nosocomial SARS-CoV-2 infection has worse outcomes than community-acquired disease. This was prospective cohort study of all hospitalised patients in three acute hospitals with confirmed COVID-19 on 9th April 2020. Patients were followed up for at least 30 days. Nosocomial infection was defined as a positive swab after 7 days of admission. 173 patients were identified; 19 (11.0%) had nosocomial infection. 32 (18.5%) had 30-day all-cause mortality; there was no statistically significant differences between 30-day mortality (21.1% vs 17.6% vs 21.6% respectively, p=0.755). Nosocomial SARS-CoV-2 infection is not associated with increased mortality compared with community acquired infection
Dynamics and Lax-Phillips scattering for generalized Lamb models
This paper treats the dynamics and scattering of a model of coupled
oscillating systems, a finite dimensional one and a wave field on the half
line. The coupling is realized producing the family of selfadjoint extensions
of the suitably restricted self-adjoint operator describing the uncoupled
dynamics. The spectral theory of the family is studied and the associated
quadratic forms constructed. The dynamics turns out to be Hamiltonian and the
Hamiltonian is described, including the case in which the finite dimensional
systems comprises nonlinear oscillators; in this case the dynamics is shown to
exist as well. In the linear case the system is equivalent, on a dense
subspace, to a wave equation on the half line with higher order boundary
conditions, described by a differential polynomial explicitely
related to the model parameters. In terms of such structure the Lax-Phillips
scattering of the system is studied. In particular we determine the incoming
and outgoing translation representations, the scattering operator, which turns
out to be unitarily equivalent to the multiplication operator given by the
rational function , and the Lax-Phillips semigroup,
which describes the evolution of the states which are neither incoming in the
past nor outgoing in the future
Sodium Bicarbonate Ingestion Improves Time-to-Exhaustion Cycling Performance and Alters Estimated Energy System Contribution:A Dose-Response Investigation
This study investigated the effects of two sodium bicarbonate (NaHCO3) doses on estimated energy system contribution and performance during an intermittent high-intensity cycling test (HICT), and time-to-exhaustion (TTE) exercise. Twelve healthy males (stature: 1.75 ± 0.08 m; body mass: 67.5 ± 6.3 kg; age: 21.0 ± 1.4 years; maximal oxygen consumption: 45.1 ± 7.0 ml.kg.min-1) attended four separate laboratory visits. Maximal aerobic power (MAP) was identified from an incremental exercise test. During the three experimental visits, participants ingested either 0.2 g.kg-1 BM NaHCO3 (SBC2), 0.3 g.kg-1 BM NaHCO3 (SBC3), or 0.07 g.kg-1 BM sodium chloride (placebo; PLA), 60 minutes pre-exercise. The HICT involved 3 x 60 s cycling bouts (90%, 95%, 100% MAP) interspersed with 90 s recovery, followed by TTE cycling at 105% MAP. Blood lactate was sampled after each cycling bout to calculate estimates for glycolytic contribution to exercise. Gastrointestinal (GI) upset was quantified at baseline, 30 minutes and 60 minutes post-ingestion, and 5 minutes post-exercise. Cycling TTE increased for SBC2 (+20.2 s; p =0.045) and SBC3 (+31.9 s; p =0.004) compared to PLA. Glycolytic contribution increased during the TTE protocol for SBC2 (+7.77 kJ; p =0.10) and SBC3 (+7.95 kJ; p =0.07) compared to PLA. GI upset was exacerbated post-exercise after SBC3 for nausea compared to SBC2 and PLA (p 0.05). Both NaHCO3 doses enhanced cycling performance and glycolytic contribution, however, higher doses may maximise ergogenic benefits
U–Pb Zircon Ages, Mapping, and Biostratigraphy of the Payette Formation and Idaho Group North of the Western Snake River Plain, Idaho: Implications for Hydrocarbon System Correlation
Sedimentary deposits north of the western Snake River Plain host Idaho’s first and only producing oil and gas field. They consist of the lower to middle Miocene Payette Formation, the middle to upper Miocene Poison Creek and Chalk Hills Formations, and the Pliocene to lower Pleistocene Glenns Ferry Formation. Using new geochronology, palynomorph biostratigraphy, and geologic mapping, we connect updip surface features to subsurface petroleum play elements. The Payette Formation is a likely main source of the hydrocarbons, and acts as one of the reservoirs in the unnamed basin. Here, we redefine the Payette Formation as 0 to ~3,500 ft (0 to ~1,000 m) of mudstone, with lesser amounts of sandstone overlying and interbedded with the Columbia River Basalt Group and Weiser volcanic field. Index palynomorphs, including Liquidambar and Pterocarya, present in Idaho during and immediately after the middle Miocene climatic optimum, and new U–Pb ages of 16.39 and 15.88 Ma, help establish the thickness and extent of the formation. For the first time, these biostratigraphic markers have been defined for the oil and gas wells. The Poison Creek Formation is sandstone interbedded with mudstone that is ~800–1,800 ft (250–550 m) thick. The Chalk Hills Formation is a tuffaceous siltstone, claystone, and sandstone that is as much as ~4,200 ft (1,280 m) thick. New U–Pb ages are 10.1, 9.04, and 9.00 for the Poison Creek Formation, along with maximum depositional ages of 10.7 to 9.9 Ma for four samples from the Poison Creek Formation. A single U–Pb age of 7.78 Ma was determined from pumice low in the Chalk Hills Formation. Like the Payette Formation, the Poison Creek Formation can be a reservoir, whereas the Chalk Hills Formation acts as a sealing mudstone facies. The overlying sandstone, siltstone, and conglomerate of the Glenns Ferry Formation act as the overburden to the petroleum system in the subsurface, and were important for burial and hydrocarbon maturation. The Glenns Ferry Formation is up to 500 ft (150 m) thick in the study area, as much has been eroded. Whereas the Payette and Poison Creek Formations were deposited during the mid-Miocene climatic optimum amongst and above volcanic flows, the Chalk Hills and Glenns Ferry Formations were deposited within ancient Lake Idaho during an overall increase in aridity and cooling after the mid-Miocene climatic optimum
Large Deviations in the Superstable Weakly Imperfect Bose Gas
The superstable Weakly Imperfect Bose Gas {(WIBG)} was originally derived to
solve the inconsistency of the Bogoliubov theory of superfluidity. Its
grand-canonical thermodynamics was recently solved but not at {point of} the
{(first order)} phase transition. This paper proposes to close this gap by
using the large deviations formalism and in particular the analysis of the Kac
distribution function. It turns out that, as a function of the chemical
potential, the discontinuity of the Bose condensate density at the phase
transition {point} disappears as a function of the particle density. Indeed,
the Bose condensate continuously starts at the first critical particle density
and progressively grows but the free-energy per particle stays constant until
the second critical density is reached. At higher particle densities, the Bose
condensate density as well as the free-energy per particle both increase
{monotonously}
A pragmatic approach to the problem of the self-adjoint extension of Hamilton operators with the Aharonov-Bohm potential
We consider the problem of self-adjoint extension of Hamilton operators for
charged quantum particles in the pure Aharonov-Bohm potential (infinitely thin
solenoid). We present a pragmatic approach to the problem based on the
orthogonalization of the radial solutions for different quantum numbers. Then
we discuss a model of a scalar particle with a magnetic moment which allows to
explain why the self-adjoint extension contains arbitrary parameters and give a
physical interpretation.Comment: 8 pages, LaTeX, to appear in J. Phys.
Imprints of dark energy on cosmic structure formation: II) Non-Universality of the halo mass function
The universality of the halo mass function is investigated in the context of
dark energy cosmologies. This widely used approximation assumes that the mass
function can be expressed as a function of the matter density omega_m and the
rms linear density fluctuation sigma only, with no explicit dependence on the
properties of dark energy or redshift. In order to test this hypothesis we run
a series of 15 high-resolution N-body simulations for different cosmological
models. These consists of three LCDM cosmologies best fitting WMAP-1, 3 and 5
years data, and three toy-models characterized by a Ratra-Peebles quintessence
potential with different slopes and amounts of dark energy density. These toy
models have very different evolutionary histories at the background and linear
level, but share the same sigma8 value. For each of these models we measure the
mass function from catalogues of halos identified in the simulations using the
Friend-of-Friend (FoF) algorithm. We find redshift dependent deviations from a
universal behaviour, well above numerical uncertainties and of non-stochastic
origin, which are correlated with the linear growth factor of the investigated
cosmologies. Using the spherical collapse as guidance, we show that such
deviations are caused by the cosmology dependence of the non-linear collapse
and virialization process. For practical applications, we provide a fitting
formula of the mass function accurate to 5 percents over the all range of
investigated cosmologies. We also derive an empirical relation between the FoF
linking parameter and the virial overdensity which can account for most of the
deviations from an exact universal behavior. Overall these results suggest that
the halo mass function contains unique cosmological information since it
carries a fossil record of the past cosmic evolution.Comment: 21 pages, 19 figures, 5 tables, published in MNRAS. Paper I:
arXiv:0903.549
Regularity for eigenfunctions of Schr\"odinger operators
We prove a regularity result in weighted Sobolev spaces (or
Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator.
More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space
obtained by blowing up the set of singular points of the Coulomb type potential
V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N}
\frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u
in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution
sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0.
Our result extends to the case when b_j and c_{ij} are suitable bounded
functions on the blown-up space. In the single-electron, multi-nuclei case, we
obtain the same result for all a<3/2.Comment: to appear in Lett. Math. Phy
- …