2,523 research outputs found

    Facet machining of silica waveguides with nanoscale roughness without polishing or lapping

    No full text
    To achieve low-loss free space coupling for integrated optics, device facets need to be smooth, free of chips and flat. The typical route for accomplishing these requirements is by traditional lapping and polishing. We report that high quality optical quality facets with a Sa = 4.9 nm can be machined using a simple dicing technique. In order to directly measure the scatter loss a device with a series of Bragg gratings is used to characterise the average interface loss per facet

    Supporting resource-based analysis of task information needs

    Get PDF
    We investigate here an approach to modelling the dynamic information requirements of a user performing a number of tasks, addressing both the provision and representation of information, viewing the information as being distributed across a set of resources. From knowledge of available resources at the user interface, and task information needs we can identify whether the system provides the user with adequate support for task execution. We look at how we can use tools to help reason about these issues, and illustrate their use through an example.We also consider a full range of analyses suggested using this approach which could potentially be supported by automated reasoning systems.(undefined

    On post-Lie algebras, Lie--Butcher series and moving frames

    Full text link
    Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on differential manifolds. They have been studied extensively in recent years, both from algebraic operadic points of view and through numerous applications in numerical analysis, control theory, stochastic differential equations and renormalization. Butcher series are formal power series founded on pre-Lie algebras, used in numerical analysis to study geometric properties of flows on euclidean spaces. Motivated by the analysis of flows on manifolds and homogeneous spaces, we investigate algebras arising from flat connections with constant torsion, leading to the definition of post-Lie algebras, a generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately associated with euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan's method of moving frames. Lie--Butcher series combine Butcher series with Lie series and are used to analyze flows on manifolds. In this paper we show that Lie--Butcher series are founded on post-Lie algebras. The functorial relations between post-Lie algebras and their enveloping algebras, called D-algebras, are explored. Furthermore, we develop new formulas for computations in free post-Lie algebras and D-algebras, based on recursions in a magma, and we show that Lie--Butcher series are related to invariants of curves described by moving frames.Comment: added discussion of post-Lie algebroid

    Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds

    Get PDF
    Human airway smooth muscle (HASM) contraction plays a central role in regulating airway resistance in both healthy and asthmatic bronchioles. In vitro studies that investigate the intricate mechanisms that regulate this contractile process are predominantly conducted on tissue culture plastic, a rigid, 2D geometry, unlike the 3D microenvironment smooth muscle cells are exposed to in situ. It is increasingly apparent that cellular characteristics and responses are altered between cells cultured on 2D substrates compared with 3D topographies. Electrospinning is an attractive method to produce 3D topographies for cell culturing as the fibers produced have dimensions within the nanometer range, similar to cells' natural environment. We have developed an electrospun scaffold using the nondegradable, nontoxic, polymer polyethylene terephthalate (PET) composed of uniaxially orientated nanofibers and have evaluated this topography's effect on HASM cell adhesion, alignment, and morphology. The fibers orientation provided contact guidance enabling the formation of fully aligned sheets of smooth muscle. Moreover, smooth muscle cells cultured on the scaffold present an elongated cell phenotype with altered contractile protein levels and distribution. HASM cells cultured on this scaffold responded to the bronchoconstrictor bradykinin. The platform presented provides a novel in vitro model that promotes airway smooth muscle cell development toward a more in vivo-like phenotype while providing topological cues to ensure full cell alignment

    Wound healing and hyper-hydration - a counter intuitive model

    Get PDF
    Winters seminal work in the 1960s relating to providing an optimal level of moisture to aid wound healing (granulation and re-epithelialisation) has been the single most effective advance in wound care over many decades. As such the development of advanced wound dressings that manage the fluidic wound environment have provided significant benefits in terms of healing to both patient and clinician. Although moist wound healing provides the guiding management principle confusion may arise between what is deemed to be an adequate level of tissue hydration and the risk of developing maceration. In addition, the counter-intuitive model ‘hyper-hydration’ of tissue appears to frustrate the moist wound healing approach and advocate a course of intervention whereby tissue is hydrated beyond what is a normally acceptable therapeutic level. This paper discusses tissue hydration, the cause and effect of maceration and distinguishes these from hyper-hydration of tissue. The rationale is to provide the clinician with a knowledge base that allows optimisation of treatment and outcomes and explains the reasoning behind wound healing using hyper-hydration

    Examining sex differences in knee pain: the Multicenter Osteoarthritis Study

    Get PDF
    SummaryObjectiveTo determine whether women experience greater knee pain severity than men at equivalent levels of radiographic knee osteoarthritis (OA).Design and methodsA cross-sectional analysis of 2712 individuals (60% women) without knee replacement or a recent steroid injection. Sex differences in pain severity at each Kellgren–Lawrence (KL) grade were assessed by knee using visual analog scale (VAS) scale and Western Ontario and McMaster Universities Arthritis Index (WOMAC) with and without adjustment for age, analgesic use, Body mass index (BMI), clinic site, comorbid conditions, depression score, education, race, and widespread pain (WSP) using generalized estimating equations. Effect sizes (Cohen's d) were also calculated. Analyses were repeated in those with and without patellofemoral OA (PFOA).ResultsWomen reported higher VAS pain at all KL grades in unadjusted analyses (d = 0.21–0.31, P < 0.0001–0.0038) and in analyses adjusted for all covariates except WSP (d = 0.16–0.22, P < 0.0001–0.0472). Pain severity differences further decreased with adjustment for WSP (d = 0.10–0.18) and were significant for KL grade ≤2 (P = 0.0015) and 2 (P = 0.0200). Presence compared with absence of WSP was associated with significantly greater knee pain at all KL grades (d = 0.32–0.52, P < 0.0001–0.0008). In knees with PFOA, VAS pain severity sex differences were greater at each KL grade (d = 0.45–0.62, P = 0.0006–0.0030) and remained significant for all KL grades in adjusted analyses (d = 0.31–0.57, P = 0.0013–0.0361). Results using WOMAC were similar.ConclusionsWomen reported greater knee pain than men regardless of KL grade, though effect sizes were generally small. These differences increased in the presence of PFOA. The strong contribution of WSP to sex differences in knee pain suggests that central sensitivity plays a role in these differences

    Cosmological Imprints of Pre-Inflationary Particles

    Full text link
    We study some of the cosmological imprints of pre-inflationary particles. We show that each such particle provides a seed for a spherically symmetric cosmic defect. The profile of this cosmic defect is fixed and its magnitude is linear in a single parameter that is determined by the mass of the pre-inflationary particle. We study the CMB and peculiar velocity imprints of this cosmic defect and suggest that it could explain some of the large scale cosmological anomalies.Comment: 31 pages, 7 figure

    Uniaxial Phase Transition in Si : Ab initio Calculations

    Full text link
    Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing the phase-transition pressures at uniaxial compression. We also show that it is possible to have phase transitions occur only when the phases are under uniaxial compression, in spite of no phase transition when under hydrostatic commpression. Taking all five phases into consideration, the phase diagram at uniaxial compression was constructed for pressures under 20 GPa. The stable phases were found to be diamond, beta-tin and sh structures, i.e. the same as those when under hydrostatic condition. According to the phase diagram, direct phase transition from the diamond to the sh phase is possible if the applied uniaxial pressures, on increasing, satisfy the condition of Px>Pz. Simiilarly, the sh-to-beta-tin transition on increeasing pressures is also possible if the applied uniaxial pressures are varied from the condition of Px>Pz, on which the phase of sh is stable, to that of Px<Pz, on which the beta-tin is stable
    corecore