6,159 research outputs found
Storing entanglement of nuclear spins via Uhrig Dynamical Decoupling
Stroboscopic spin flips have already been shown to prolong the coherence
times of quantum systems under noisy environments. Uhrig's dynamical decoupling
scheme provides an optimal sequence for a quantum system interacting with a
dephasing bath. Several experimental demonstrations have already verified the
efficiency of such dynamical decoupling schemes in preserving single qubit
coherences. In this work we describe the experimental study of Uhrig's
dynamical decoupling in preserving two-qubit entangled states using an ensemble
of spin-1/2 nuclear pairs in solution state. We find that the performance of
odd-order Uhrig sequences in preserving entanglement is superior to both
even-order Uhrig sequences and periodic spin-flip sequences. We also find that
there exists an optimal length of the Uhrig sequence at which the decoherence
time gets boosted from a few seconds to about 30 seconds.Comment: 6 pages, 7 figure
Forced motion of a probe particle near the colloidal glass transition
We use confocal microscopy to study the motion of a magnetic bead in a dense
colloidal suspension, near the colloidal glass transition volume fraction
. For dense liquid-like samples near , below a threshold force
the magnetic bead exhibits only localized caged motion. Above this force, the
bead is pulled with a fluctuating velocity. The relationship between force and
velocity becomes increasingly nonlinear as is approached. The
threshold force and nonlinear drag force vary strongly with the volume
fraction, while the velocity fluctuations do not change near the transition.Comment: 7 pages, 4 figures revised version, accepted for publication in
Europhysics Letter
Multispin correlations and pseudo-thermalization of the transient density matrix in solid-state NMR: free induction decay and magic echo
Quantum unitary evolution typically leads to thermalization of generic
interacting many-body systems. There are very few known general methods for
reversing this process, and we focus on the magic echo, a radio-frequency pulse
sequence known to approximately "rewind" the time evolution of dipolar coupled
homonuclear spin systems in a large magnetic field. By combining analytic,
numerical, and experimental results we systematically investigate factors
leading to the degradation of magic echoes, as observed in reduced revival of
mean transverse magnetization. Going beyond the conventional analysis based on
mean magnetization we use a phase encoding technique to measure the growth of
spin correlations in the density matrix at different points in time following
magic echoes of varied durations and compare the results to those obtained
during a free induction decay (FID). While considerable differences are
documented at short times, the long-time behavior of the density matrix appears
to be remarkably universal among the types of initial states considered -
simple low order multispin correlations are observed to decay exponentially at
the same rate, seeding the onset of increasingly complex high order
correlations. This manifestly athermal process is constrained by conservation
of the second moment of the spectrum of the density matrix and proceeds
indefinitely, assuming unitary dynamics.Comment: 12 Pages, 9 figure
Processing and Transmission of Information
Contains reports on five research projects.National Aeronautics and Space Administration (Grant NGL 22-009-013)National Science Foundation (Grant GK-5800
Processing and Transmission of Information
Contains reports on four research projects.National Aeronautics and Space Administration (Grant NGL 22-009-013
Information dynamics: patterns of expectation and surprise in the perception of music
This is a postprint of an article submitted for consideration in Connection Science © 2009 [copyright Taylor & Francis]; Connection Science is available online at:http://www.tandfonline.com/openurl?genre=article&issn=0954-0091&volume=21&issue=2-3&spage=8
Investigation, Development, and Evaluation of Performance Proving for Fault-tolerant Computers
A number of methodologies for verifying systems and computer based tools that assist users in verifying their systems were developed. These tools were applied to verify in part the SIFT ultrareliable aircraft computer. Topics covered included: STP theorem prover; design verification of SIFT; high level language code verification; assembly language level verification; numerical algorithm verification; verification of flight control programs; and verification of hardware logic
Anorectal malformations
Anorectal malformations comprise a wide spectrum of diseases, which can affect boys and girls, and involve the distal anus and rectum as well as the urinary and genital tracts. They occur in approximately 1 in 5000 live births. Defects range from the very minor and easily treated with an excellent functional prognosis, to those that are complex, difficult to manage, are often associated with other anomalies, and have a poor functional prognosis. The surgical approach to repairing these defects changed dramatically in 1980 with the introduction of the posterior sagittal approach, which allowed surgeons to view the anatomy of these defects clearly, to repair them under direct vision, and to learn about the complex anatomic arrangement of the junction of rectum and genitourinary tract. Better imaging techniques, and a better knowledge of the anatomy and physiology of the pelvic structures at birth have refined diagnosis and initial management, and the analysis of large series of patients allows better prediction of associated anomalies and functional prognosis. The main concerns for the surgeon in correcting these anomalies are bowel control, urinary control, and sexual function. With early diagnosis, management of associated anomalies and efficient meticulous surgical repair, patients have the best chance for a good functional outcome. Fecal and urinary incontinence can occur even with an excellent anatomic repair, due mainly to associated problems such as a poorly developed sacrum, deficient nerve supply, and spinal cord anomalies. For these patients, an effective bowel management program, including enema and dietary restrictions has been devised to improve their quality of life
Nanoscale Weibull Statistics
In this paper a modification of the classical Weibull Statistics is developed
for nanoscale applications. It is called Nanoscale Weibull Statistics. A
comparison between Nanoscale and classical Weibull Statistics applied to
experimental results on fracture strength of carbon nanotubes clearly shows the
effectiveness of the proposed modification. A Weibull's modulus around 3 is,
for the first time, deduced for nanotubes. The approach can treat (also) a
small number of structural defects, as required for nearly defect free
structures (e.g., nanotubes) as well as a quantized crack propagation (e.g., as
a consequence of the discrete nature of matter), allowing to remove the
paradoxes caused by the presence of stress-intensifications
Evaluation of delay discounting as a transdiagnostic research domain criteria indicator in 1388 general community adults
Background
The Research Domain Criteria (RDoC) approach proposes a novel psychiatric nosology using transdiagnostic dimensional mechanistic constructs. One candidate RDoC indicator is delay discounting (DD), a behavioral economic measure of impulsivity, based predominantly on studies examining DD and individual conditions. The current study sought to evaluate the transdiagnostic significance of DD in relation to several psychiatric conditions concurrently.
Methods
Participants were 1388 community adults (18–65) who completed an in-person assessment, including measures of DD, substance use, depression, anxiety, posttraumatic stress disorder, and attention-deficit hyperactivity disorder (ADHD). Relations between DD and psychopathology were examined with three strategies: first, examining differences by individual condition using clinical cut-offs; second, examining DD in relation to latent psychopathology variables via principal components analysis (PCA); and third, examining DD and all psychopathology simultaneously via structural equation modeling (SEM).
Results
Individual analyses revealed elevations in DD were present in participants screening positive for multiple substance use disorders (tobacco, cannabis, and drug use disorder), ADHD, major depressive disorder (MDD), and an anxiety disorder (ps < 0.05–0.001). The PCA produced two latent components (substance involvement v. the other mental health indicators) and DD was significantly associated with both (ps < 0.001). In the SEM, unique significant positive associations were observed between the DD latent variable and tobacco, cannabis, and MDD (ps < 0.05–0.001).
Conclusions
These results provide some support for DD as a transdiagnostic indicator, but also suggest that studies of individual syndromes may include confounding via comorbidities. Further systematic investigation of DD as an RDoC indicator is warranted
- …