6 research outputs found

    Septic System Impacts on Source Water: Two Novel Field Tracer Experiments in Fractured Sedimentary Bedrock

    No full text
    Septic systems are a common contributor of contaminants to groundwater that have implications for source water protection, particularly in fractured sedimentary bedrock environments. Two 24-h tracer experiments were performed that applied (1) the dye Lissamine Flavine FF and (2) three artificial sweeteners (acesulfame, sucralose, and cyclamate) in the leaching bed to examine solute transport from a single-family septic bed to a multilevel monitoring well installed in fractured sedimentary bedrock on a First Nation reserve in Southern Ontario, Canada. Tracer was first observed 3 h and 20 min after deployment, and breakthrough curves showed that multiple pathways likely exist between the septic bed and the monitoring well. Cyclamate concentrations were more elevated than expected compared to other studies that examined cyclamate’s attenuation in the laboratory and in porous media aquifers. Solute transport through the septic bed was analyzed with the numerical modeling software Hydrus 1D, which indicated that the septic bed may be too thin, located directly on bedrock, underlain by fractured soils, or bypassed through a short-circuit. The rapid transport of septic leachate to fractured sedimentary aquifers is problematic for First Nation and rural communities. More stringent regulations are needed for the design and use of septic systems in these environments

    Nitrate sources and transformation processes in groundwater of a coastal area experiencing various environmental stressors

    No full text
    In coastal salinized groundwater systems, contamination from various nitrate (NO3) inputs combined with complex hydrogeochemical processes make it difficult to distinguish NO3 sources and identify potential NO3 transformtation processes. Effective field-based NO3 studies in coastal areas are needed to improve the understanding of NO3 contamination dynamics in groundwater of such complex coastal systems. This study focuses on a typical Mediterranean coastal agricultural area, located in Tunisia, experiencing substantial NO3 contamination from multiple anthropogenic sources. Here, multiple isotopic tracers (δ18OH2O, δ2HH2O, δ15NNO3, δ18ONO3, and δ11B) combined with a Bayesian isotope MixSIAR model are used (i) to identify the major NO3 sources and their contributions, and (ii) to describe the potential NO3 transformation processes. The measured NO3 concentrations in groundwater are above the natural baseline threshold, suggesting anthropogenic influence. The measured isotopic composition of NO3 indicates that manure, soil organic matter, and sewage are the potential sources of NO3, while δ11B values constrain the NO3 contamination to manure; a finding that is supported by the results of MixSIAR model revealing that manure-derived NO3 dominates over other likely sources. Nitrate derived from manure in the study area is attributed to organic fertilizers used to promote crop growth, and livestock that deposit manure directly on the ground surface. Evidence for ongoing denitrification in groundwaters of the study area is supported by an enrichment in both 15N and 18O in the remaining NO3, although isotopic mass balances between the measured and the theoretical δ18ONO3 values also suggest the occurrence of nitrification. The simultaneous occurrence of these biogeochemical processes with heterogeneous distribution across the study area reflect the complexity of interactions within the investigated coastal aquifer. The multiple isotopic tracer approach used here can identify the effect of multiple NO3 anthropogenic activities in coastal environments, which is fundamental for sustainable groundwater resources management

    Spatiotemporal variations of nitrogen and phosphorus in a clay plain hydrological system in the Great Lakes Basin

    No full text
    corecore