861 research outputs found
Dynamics and hysteresis in square lattice artificial spin-ice
Dynamical effects under geometrical frustration are considered in a model for
artificial spin ice on a square lattice in two dimensions. Each island of the
spin ice has a three-component Heisenberg-like dipole moment subject to shape
anisotropies that influence its direction. The model has real dynamics,
including rotation of the magnetic degrees of freedom, going beyond the
Ising-type models of spin ice. The dynamics is studied using a Langevin
equation solved via a second order Heun algorithm. Thermodynamic properties
such as the specific heat are presented for different couplings. A peak in
specific heat is related to a type of melting-like phase transition present in
the model. Hysteresis in an applied magnetic field is calculated for model
parameters where the system is able to reach thermodynamic equilibrium.Comment: Revised versio
The concept of correlated density and its application
The correlated density appears in many physical systems ranging from dense
interacting gases up to Fermi liquids which develop a coherent state at low
temperatures, the superconductivity. One consequence of the correlated density
is the Bernoulli potential in superconductors which compensates forces from
dielectric currents. This Bernoulli potential allows to access material
parameters. Though within the surface potential these contributions are largely
canceled, the bulk measurements with NMR can access this potential. Recent
experiments are explained and new ones suggested. The underlying quantum
statistical theory in nonequilibrium is the nonlocal kinetic theory developed
earlier.Comment: 14 pages, CMT30 proceeding
Clinical outcomes of pre-loaded ultra-thin DSAEK and pre-loaded DMEK
Objective: To compare clinical outcomes and complications between pre-loaded ultra-thin Descemet stripping automated endothelialkeratoplasty (pl-UT-DSAEK) and pre-loaded Descemet membrane endothelial keratoplasty (pl-DMEK). Methods and analysis: Comparative study in patients with endothelial dysfunction associated with Fuchs endothelial corneal dystrophy and pseudophakic bullous keratopathy who underwent pl-UT-DSAEK or pl-DMEK transplants. For both groups, the tissues were pre-loaded at the Fondazione Banca degli Occhi del Veneto (Venice, Italy) and shipped to The Royal Liverpool University Hospital (Liverpool, UK). Best corrected visual acuity (BCVA) and re-bubbling rates were the main outcome measures. Results: 56 eyes of 56 patients were included. 31 received pl-UT-DSAEK and 25 received pl-DMEK. At 12 months, BCVA (LogMAR) was significantly better for pl-DMEK (0.17±0.20 LogMAR) compared with pl-UT-DSAEK (0.37±0.37 LogMAR, p<0.01). The percentage of people that achieved ≥20/30 was significantly higher in the pl-DMEK group. The rate of re-bubbling, however, was significantly higher for pl-DMEK (44.0%) than for Pl-UT-DSAEK (12.9%), p<0.01. Conclusion: Pl-DMEK offers better BCVA than pl-UT-DSAEK. The higher re-bubbling rate associated with pre-loaded DMEK is of concern
Serum cytokine profiles differentiating hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome
© 2017 Khaiboullina, Levis, Morzunov, Martynova, Anokhin, Gusev, St Jeor, Lombardi and Rizvanov.Hantavirus infection is an acute zoonosis that clinically manifests in two primary forms, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). HFRS is endemic in Europe and Russia, where the mild form of the disease is prevalent in the Tatarstan region. HPS is endemic in Argentina, as well as other countries of North and South American. HFRS and HPS are usually acquired via the upper respiratory tract by inhalation of virus-contaminated aerosol. Although the pathogenesis of HFRS and HPS remains largely unknown, postmortem tissue studies have identified endothelial cells as the primary target of infection. Importantly, cell damage due to virus replication, or subsequent tissue repair, has not been documented. Since no single factor has been identified that explains the complexity of HFRS or HPS pathogenesis, it has been suggested that a cytokine storm may play a crucial role in the manifestation of both diseases. In order to identify potential serological markers that distinguish HFRS and HPS, serum samples collected during early and late phases of the disease were analyzed for 48 analytes using multiplex magnetic bead-based assays. Overall, serum cytokine profiles associated with HPS revealed a more pro-inflammatory milieu as compared to HFRS. Furthermore, HPS was strictly characterized by the upregulation of cytokine levels, in contrast to HFRS where cases were distinguished by a dichotomy in serum cytokine levels. The severe form of hantavirus zoonosis, HPS, was characterized by the upregulation of a higher number of cytokines than HFRS (40 vs 21). In general, our analysis indicates that, although HPS and HFRS share many characteristic features, there are distinct cytokine profiles for these diseases. These profiles suggest a strong activation of an innate immune and inflammatory responses are associated with HPS, relative to HFRS, as well as a robust activation of Th1-type immune responses. Finally, the results of our analysis suggest that serum cytokines profiles of HPS and HFRS cases are consistent with the presence of extracellular matrix degradation, increased mononuclear leukocyte proliferation, and transendothelial migration
Eye bank versus surgeon prepared DMEK tissues: influence on adhesion and re-bubbling rate
AIM: To investigate the difference in adhesion and rebubbling rate between eye bank and surgeon prepared Descemet membrane endothelial keratoplasty (DMEK) tissues. METHODS: Laboratory and clinical retrospective comparative interventional case series. Research corneal tissues were obtained for laboratory investigation. The clinical study involved patients with endothelial dysfunction who underwent DMEK surgery and tamponade with air. Tissues were stripped using a standard DMEK stripping technique (SCUBA) and shipped as prestripped or loaded in a 2.2 intra-ocular lens cartridge with endothelium facing inwards (preloaded) before transporting from the eye bank to the surgeon. For surgeon prepared tissues, all the grafts were stripped in the theatre and transplanted or stripped in the laboratory and tested immediately. Adhesion force and elastic modulus were measured in the centre and mid-periphery in a laboratory ex vivo investigation using atomic force microscopy, while rebubbling rates were recorded in the clinical study. RESULTS: There was no difference in endothelial cell viability between surgeon or eye bank prepared tissue. Surgeon-stripped DMEK grafts in the laboratory investigation showed significantly higher elastic modulus and adhesion force compared to prestripped and preloaded tissues (p<0.0001). In the clinical data, rebubbling rates of 48%, 40% and 15% were observed in preloaded, prestripped and surgeon-stripped DMEK grafts, respectively. Rebubbling rates were significantly associated with combined cataract surgery (p=0.009) and with time from harvesting the graft to the surgery (p=0.02). CONCLUSIONS: Decreased adhesion forces and elastic modulus in eye bank prepared tissues may contribute to increased rebubbling rates
Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia
Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated proteins including the SRC family of kinases. Recently our group and others have shown that pharmacologic inhibition and genetic knockdown of Bruton's tyrosine kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK inhibition in human AML are mediated via inhibition of downstream NF-κB pro-survival signalling however the upstream drivers of BTK activation in human AML have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the activation of downstream kinases including MAPK, AKT and STAT5. In addition we show that BTK RNAi inhibits proliferation of FLT3-ITD AML cells. Finally we report that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival. These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated AML
Microfluidics on the fly: Inexpensive rapid fabrication of thermally laminated microfluidic devices for live imaging and multimodal perturbations of multicellular systems
Microfluidic devices provide a platform for analyzing both natural and synthetic multicellular systems. Currently, substantial capital investment and expertise are required for creating microfluidic devices using standard soft-lithography. These requirements present barriers to entry for many nontraditional users of microfluidics, including developmental biology laboratories. Therefore, fabrication methodologies that enable rapid device iteration and work “out-of-the-box” can accelerate the integration of microfluidics with developmental biology. Here, we have created and characterized low-cost hybrid polyethylene terephthalate laminate (PETL) microfluidic devices that are suitable for cell and micro-organ culture assays. These devices were validated with mammalian cell lines and the Drosophila wing imaginal disc as a model micro-organ. First, we developed and tested PETLs that are compatible with both long-term cultures and high-resolution imaging of cells and organs. Further, we achieved spatiotemporal control of chemical gradients across the wing discs with a multilayered microfluidic device. Finally, we created a multilayered device that enables controllable mechanical loading of micro-organs. This mechanical actuation assay was used to characterize the response of larval wing discs at different developmental stages. Interestingly, increased deformation of the older wing discs for the same mechanical loading suggests that the compliance of the organ is increased in preparation for subsequent morphogenesis. Together, these results demonstrate the applicability of hybrid PETL devices for biochemical and mechanobiology studies on micro-organs and provide new insights into the mechanics of organ development
- …