17,899 research outputs found

    Detecting many-body entanglements in noninteracting ultracold atomic fermi gases

    Full text link
    We explore the possibility of detecting many-body entanglement using time-of-flight (TOF) momentum correlations in ultracold atomic fermi gases. In analogy to the vacuum correlations responsible for Bekenstein-Hawking black hole entropy, a partitioned atomic gas will exhibit particle-hole correlations responsible for entanglement entropy. The signature of these momentum correlations might be detected by a sensitive TOF type experiment.Comment: 5 pages, 5 figures, fixed axes labels on figs. 3 and 5, added reference

    Zero dimensional area law in a gapless fermion system

    Full text link
    The entanglement entropy of a gapless fermion subsystem coupled to a gapless bulk by a "weak link" is considered. It is demonstrated numerically that each independent weak link contributes an entropy proportional to lnL, where L is linear dimension of the subsystem.Comment: 6 pages, 11 figures; added 3d computatio

    What is a crystal?

    Get PDF
    Almost 25 years have passed since Shechtman discovered quasicrystals, and 15 years since the Commission on Aperiodic Crystals of the International Union of Crystallography put forth a provisional definition of the term crystal to mean ``any solid having an essentially discrete diffraction diagram.'' Have we learned enough about crystallinity in the last 25 years, or do we need more time to explore additional physical systems? There is much confusion and contradiction in the literature in using the term crystal. Are we ready now to propose a permanent definition for crystal to be used by all? I argue that time has come to put a sense of order in all the confusion.Comment: Submitted to Zeitschrift fuer Kristallographi

    Critical phase in non-conserving zero-range processes and equilibrium networks

    Get PDF
    Zero-range processes, in which particles hop between sites on a lattice, are closely related to equilibrium networks, in which rewiring of links take place. Both systems exhibit a condensation transition for appropriate choices of the dynamical rules. The transition results in a macroscopically occupied site for zero-range processes and a macroscopically connected node for networks. Criticality, characterized by a scale-free distribution, is obtained only at the transition point. This is in contrast with the widespread scale-free real-life networks. Here we propose a generalization of these models whereby criticality is obtained throughout an entire phase, and the scale-free distribution does not depend on any fine-tuned parameter.Comment: 4 pages, 4 figure

    The tensor hypercontracted parametric reduced density matrix algorithm: coupled-cluster accuracy with O(r^4) scaling

    Full text link
    Tensor hypercontraction is a method that allows the representation of a high-rank tensor as a product of lower-rank tensors. In this paper, we show how tensor hypercontraction can be applied to both the electron repulsion integral (ERI) tensor and the two-particle excitation amplitudes used in the parametric reduced density matrix (pRDM) algorithm. Because only O(r) auxiliary functions are needed in both of these approximations, our overall algorithm can be shown to scale as O(r4), where r is the number of single-particle basis functions. We apply our algorithm to several small molecules, hydrogen chains, and alkanes to demonstrate its low formal scaling and practical utility. Provided we use enough auxiliary functions, we obtain accuracy similar to that of the traditional pRDM algorithm, somewhere between that of CCSD and CCSD(T).Comment: 11 pages, 1 figur

    A unified electrostatic and cavitation model for first-principles molecular dynamics in solution

    Full text link
    The electrostatic continuum solvent model developed by Fattebert and Gygi is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. Our model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution, and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. We apply this approach to the study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon

    Explicit characterization of the identity configuration in an Abelian Sandpile Model

    Full text link
    Since the work of Creutz, identifying the group identities for the Abelian Sandpile Model (ASM) on a given lattice is a puzzling issue: on rectangular portions of Z^2 complex quasi-self-similar structures arise. We study the ASM on the square lattice, in different geometries, and a variant with directed edges. Cylinders, through their extra symmetry, allow an easy determination of the identity, which is a homogeneous function. The directed variant on square geometry shows a remarkable exact structure, asymptotically self-similar.Comment: 11 pages, 8 figure

    Entanglement of a qubit with a single oscillator mode

    Full text link
    We solve a model of a qubit strongly coupled to a massive environmental oscillator mode where the qubit backaction is treated exactly. Using a Ginzburg-Landau formalism, we derive an effective action for this well known localization transition. An entangled state emerges as an instanton in the collective qubit-environment degree of freedom and the resulting model is shown to be formally equivalent to a Fluctuating Gap Model (FGM) of a disordered Peierls chain. Below the transition, spectral weight is transferred to an exponentially small energy scale leaving the qubit coherent but damped. Unlike the spin-boson model, coherent and effectively localized behaviors may coexist.Comment: 4 pages, 1 figure; added calculation of entanglement entrop

    Entanglement Entropy of Random Fractional Quantum Hall Systems

    Full text link
    The entanglement entropy of the ν=1/3\nu = 1/3 and ν=5/2\nu = 5/2 quantum Hall states in the presence of short range random disorder has been calculated by direct diagonalization. A microscopic model of electron-electron interaction is used, electrons are confined to a single Landau level and interact with long range Coulomb interaction. For very weak disorder, the values of the topological entanglement entropy are roughly consistent with expected theoretical results. By considering a broader range of disorder strengths, the fluctuation in the entanglement entropy was studied in an effort to detect quantum phase transitions. In particular, there is a clear signature of a transition as a function of the disorder strength for the ν=5/2\nu = 5/2 state. Prospects for using the density matrix renormalization group to compute the entanglement entropy for larger system sizes are discussed.Comment: 29 pages, 16 figures; fixed figures and figure captions; revised fluctuation calculation

    A well-posedness theory in measures for some kinetic models of collective motion

    Full text link
    We present existence, uniqueness and continuous dependence results for some kinetic equations motivated by models for the collective behavior of large groups of individuals. Models of this kind have been recently proposed to study the behavior of large groups of animals, such as flocks of birds, swarms, or schools of fish. Our aim is to give a well-posedness theory for general models which possibly include a variety of effects: an interaction through a potential, such as a short-range repulsion and long-range attraction; a velocity-averaging effect where individuals try to adapt their own velocity to that of other individuals in their surroundings; and self-propulsion effects, which take into account effects on one individual that are independent of the others. We develop our theory in a space of measures, using mass transportation distances. As consequences of our theory we show also the convergence of particle systems to their corresponding kinetic equations, and the local-in-time convergence to the hydrodynamic limit for one of the models
    corecore