1,958 research outputs found

    Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games

    Get PDF
    Biodiversity is essential to the viability of ecological systems. Species diversity in ecosystems is promoted by cyclic, non-hierarchical interactions among competing populations. Such non-transitive relations lead to an evolution with central features represented by the `rock-paper-scissors' game, where rock crushes scissors, scissors cut paper, and paper wraps rock. In combination with spatial dispersal of static populations, this type of competition results in the stable coexistence of all species and the long-term maintenance of biodiversity. However, population mobility is a central feature of real ecosystems: animals migrate, bacteria run and tumble. Here, we observe a critical influence of mobility on species diversity. When mobility exceeds a certain value, biodiversity is jeopardized and lost. In contrast, below this critical threshold all subpopulations coexist and an entanglement of travelling spiral waves forms in the course of temporal evolution. We establish that this phenomenon is robust, it does not depend on the details of cyclic competition or spatial environment. These findings have important implications for maintenance and evolution of ecological systems and are relevant for the formation and propagation of patterns in excitable media, such as chemical kinetics or epidemic outbreaks.Comment: Final submitted version; the printed version can be found at http://dx.doi.org/10.1038/nature06095 Supplementary movies are available at http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie1.AVI and http://www.theorie.physik.uni-muenchen.de/lsfrey/images_content/movie2.AV

    Relative risks of chronic kidney disease for mortality and end-stage renal disease across races are similar

    Get PDF
    Some suggest race-specific cutpoints for kidney measures to define and stage chronic kidney disease (CKD), but evidence for race-specific clinical impact is limited. To address this issue, we compared hazard ratios of estimated glomerular filtration rates (eGFR) and albuminuria across races using meta-regression in 1.1 million adults (75% Asians, 21% Whites, and 4% Blacks) from 45 cohorts. Results came mainly from 25 general population cohorts comprising 0.9 million individuals. The associations of lower eGFR and higher albuminuria with mortality and end-stage renal disease (ESRD) were largely similar across races. For example, in Asians, Whites, and Blacks, the adjusted hazard ratios (95% confidence interval) for eGFR 45-59 versus 90-104 ml/min per 1.73 m(2) were 1.3 (1.2-1.3), 1.1 (1.0-1.2), and 1.3 (1.1-1.7) for all-cause mortality, 1.6 (1.5-1.7), 1.4 (1.2-1.7), and 1.4 (0.7-2.9) for cardiovascular mortality, and 27.6 (11.1-68.7), 11.2 (6.0-20.9), and 4.1 (2.2-7.5) for ESRD, respectively. The corresponding hazard ratios for urine albumin-to-creatinine ratio 30-299 mg/g or dipstick 1+ versus an albumin-to-creatinine ratio under 10 or dipstick negative were 1.6 (1.4-1.8), 1.7 (1.5-1.9), and 1.8 (1.7-2.1) for all-cause mortality, 1.7 (1.4-2.0), 1.8 (1.5-2.1), and 2.8 (2.2-3.6) for cardiovascular mortality, and 7.4 (2.0-27.6), 4.0 (2.8-5.9), and 5.6 (3.4-9.2) for ESRD, respectively. Thus, the relative mortality or ESRD risks of lower eGFR and higher albuminuria were largely similar among three major races, supporting similar clinical approach to CKD definition and staging, across races

    Detection of Heteroplasmic Mitochondrial DNA in Single Mitochondria

    Get PDF
    BACKGROUND: Mitochondrial DNA (mtDNA) genome mutations can lead to energy and respiratory-related disorders like myoclonic epilepsy with ragged red fiber disease (MERRF), mitochondrial myopathy, encephalopathy, lactic acidosis and stroke (MELAS) syndrome, and Leber's hereditary optic neuropathy (LHON). It is not well understood what effect the distribution of mutated mtDNA throughout the mitochondrial matrix has on the development of mitochondrial-based disorders. Insight into this complex sub-cellular heterogeneity may further our understanding of the development of mitochondria-related diseases. METHODOLOGY: This work describes a method for isolating individual mitochondria from single cells and performing molecular analysis on that single mitochondrion's DNA. An optical tweezer extracts a single mitochondrion from a lysed human HL-60 cell. Then a micron-sized femtopipette tip captures the mitochondrion for subsequent analysis. Multiple rounds of conventional DNA amplification and standard sequencing methods enable the detection of a heteroplasmic mixture in the mtDNA from a single mitochondrion. SIGNIFICANCE: Molecular analysis of mtDNA from the individually extracted mitochondrion demonstrates that a heteroplasmy is present in single mitochondria at various ratios consistent with the 50/50 heteroplasmy ratio found in single cells that contain multiple mitochondria

    The fire toxicity of polyurethane foams [Review]

    Get PDF
    Polyurethane is widely used, with its two major applications, soft furnishings and insulation, having low thermal inertia, and hence enhanced flammability. In addition to their flammability, polyurethanes form carbon monoxide, hydrogen cyanide and other toxic products on decomposition and combustion. The chemistry of polyurethane foams and their thermal decomposition are discussed in order to assess the relationship between the chemical and physical composition of the foam and the toxic products generated during their decomposition. The toxic product generation during flaming combustion of polyurethane foams is reviewed, in order to relate the yields of toxic products and the overall fire toxicity to the fire conditions. The methods of assessment of fire toxicity are outlined in order to understand how the fire toxicity of polyurethane foams may be quantified. In particular, the ventilation condition has a critical effect on the yield of the two major asphyxiants, carbon monoxide and hydrogen cyanid

    A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector

    Full text link
    We describe a search method for fast moving (β>5×103\beta > 5 \times 10^{-3}) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5×1015cm2s1sr11.5 \times 10^{-15} cm^{-2} s^{-1} sr^{-1} in the velocity range 5×103β0.995 \times 10^{-3} \le \beta \le 0.99 and for nucleon decay catalysis cross section smaller than 1mb\sim 1 mb.Comment: 29 pages (12 figures). Accepted by Astroparticle Physic

    Final results of magnetic monopole searches with the MACRO experiment

    Get PDF
    We present the final results obtained by the MACRO experiment in the search for GUT magnetic monopoles in the penetrating cosmic radiation, for the range 4×105<β<14\times 10^{-5}< \beta < 1. Several searches with all the MACRO sub-detectors (i.e. scintillation counters, limited streamer tubes and nuclear track detectors) were performed, both in stand alone and combined ways. No candidates were detected and a 90% Confidence Level (C.L.) upper limit to the local magnetic monopole flux was set at the level of 1.4×10161.4\times 10^{-16} cm2^{-2} s1^{-1} sr1^{-1}. This result is the first experimental limit obtained in direct searches which is well below the Parker bound in the whole β\beta range in which GUT magnetic monopoles are expected.Comment: 12 pages, Latex, 9 figures and 2 Table

    Nuclearite search with the MACRO detector at Gran Sasso

    Full text link
    In this paper we present the results of a search for nuclearites in the penetrating cosmic radiation using the scintillator and track-etch subdetectors of the MACRO apparatus. The analyses cover the beta =v/c range at the detector depth (3700 hg/cm^2) 10^-5 < beta < 1; for beta = 2 x 10^-3 the flux limit is 2.7 x 10^-16 cm^-2 s^-1 sr^-1 for an isotropic flux of nuclearites, and twice this value for a flux of downgoing nuclearites.Comment: 16 pages, 4 Encapsulated Postscript figures, uses article.sty. Submitted to The European Physical Journal

    Atmospheric neutrino induced muons in the MACRO detector

    Get PDF
    A measurement of the flux of neutrino-induced muons using the MACRO detector is presented. Different event topologies, corresponding to different neutrino parent energies can be detected. The upward throughgoing muon sample is the larger event sample. The observed upward-throughgoing muons are 26% fewer than expected and the zenith angle distribution does not fit with the expected one. Assuming neutrino oscillations, both measurements suggest maximum mixing and Dm2 of a few times 10-3 eV2. The other samples are due to the internally produced events and to upward-going stopping muons. These data show a regular deficit of observed events in each angular bin, as expected assuming neutrino oscillations with maximum mixing, in agreement with the analysis of the upward-throughgoing muon sample.Comment: 7 pages 6 figures to appear in the proceedings of XVIII International Conference on Neutrino Physics and Astrophysics (Neutrino'98), Takayama, Japan 4-9 June, 199

    Risk Factors for Prognosis in Patients With Severely Decreased GFR

    Get PDF
    Introduction: Patients with chronic kidney disease (CKD) and estimated glomerular filtration rate (eGFR) < 30 ml/min per 1.73 m 2 (corresponding to CKD stage G4+) comprise a minority of the overall CKD population but have the highest risk for adverse outcomes. Many CKD G4+ patients are older with multiple comorbidities, which may distort associations between risk factors and clinical outcomes. Methods: We undertook a meta-analysis of risk factors for kidney failure treated with kidney replacement therapy (KRT), cardiovascular disease (CVD) events, and death in participants with CKD G4+ from 28 cohorts (n = 185,024) across the world who were part of the CKD Prognosis Consortium. Results: In the fully adjusted meta-analysis, risk factors associated with KRT were time-varying CVD, male sex, black race, diabetes, lower eGFR, and higher albuminuria and systolic blood pressure. Age was associated with a lower risk of KRT (adjusted hazard ratio: 0.74; 95% confidence interval: 0.69–0.80) overall, and also in the subgroup of individuals younger than 65 years. The risk factors for CVD events included male sex, history of CVD, diabetes, lower eGFR, higher albuminuria, and the onset of KRT. Systolic blood pressure showed a U-shaped association with CVD events. Risk factors for mortality were similar to those for CVD events but also included smoking. Most risk factors had qualitatively consistent associations across cohorts. Conclusion: Traditional CVD risk factors are of prognostic value in individuals with an eGFR < 30 ml/min per 1.73 m 2, although the risk estimates vary for kidney and CVD outcomes. These results should encourage interventional studies on correcting risk factors in this high-risk population
    corecore