20 research outputs found

    Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.

    Get PDF
    Nanostructures composed of short, noncyclic peptides represent a growing field of research in nanotechnology due to their ease of production, often remarkable material properties, and biocompatibility. Such structures have so far been almost exclusively obtained through self-assembly from aqueous solution, and their morphologies are determined by the interactions between building blocks as well as interactions between building blocks and water. Using the diphenylalanine system, we demonstrate here that, in order to achieve structural and morphological control, a change in the solvent environment represents a simple and convenient alternative strategy to the chemical modification of the building blocks. Diphenylalanine (FF) is a dipeptide capable of self-assembly in aqueous solution into needle-like hollow micro- and nanocrystals with continuous nanoscale channels that possess advantageous properties such as high stiffness and piezoelectricity and have so emerged as attractive candidates for functional nanomaterials. We investigate systematically the solubility of diphenylalanine in a range of organic solvents and probe the role of the solvent in the kinetics of self-assembly and the structures of the final materials. Finally, we report the crystal structure of the FF peptide in microcrystalline form grown from MeOH solution at 1 Å resolution and discuss the structural changes relative to the conventional materials self-assembled in aqueous solution. These findings provide a significant expansion of the structures and morphologies that are accessible through FF self-assembly for existing and future nanotechnological applications of this peptide. Solvent mediation of molecular recognition and self-association processes represents an important route to the design of new supramolecular architectures deriving their functionality from the nanoscale ordering of their components.We thank the Newman Foundation (T.O.M., T.P.J.K.), the FEBS and the Tel Aviv University Center for Nanoscience and Nanotechnology (A.L.), the BBSRC (T.P.J.K.), and the Leverhulme Trust and Magdalene College (A.K.B.) for financial support. A.L. thanks Or Berger for his assistance with the HR-SEM imaging. The X-ray diffraction data collection experiments were performed in the crystallographic X-ray facility at the Department of Biochemistry, University of Cambridge. The authors thank Pavel Afonin for help with PHENIX software suite in the refinement of the structures.This is the accepted manuscript for a paper published in ACS Nano, 2014, 8 (2), pp 1243–1253 DOI: 10.1021/nn404237f , Publication Date (Web): January 14, 201

    The first Neanderthal remains from an open-air Middle Palaeolithic site in the Levant

    Get PDF
    The late Middle Palaeolithic (MP) settlement patterns in the Levant included the repeated use of caves and open landscape sites. The fossil record shows that two types of hominins occupied the region during this period - Neandertals and Homo sapiens. Until recently, diagnostic fossil remains were found only at cave sites. Because the two populations in this region left similar material cultural remains, it was impossible to attribute any open-air site to either species. In this study, we present newly discovered fossil remains from intact archaeological layers of the open-air site 'Ein Qashish, in northern Israel. The hominin remains represent three individuals: EQH1, a nondiagnostic skull fragment; EQH2, an upper right third molar (RM3); and EQH3, lower limb bones of a young Neandertal male. EQH2 and EQH3 constitute the first diagnostic anatomical remains of Neandertals at an open-air site in the Levant. The optically stimulated luminescence ages suggest that Neandertals repeatedly visited 'Ein Qashish between 70 and 60 ka. The discovery of Neandertals at open-air sites during the late MP reinforces the view that Neandertals were a resilient population in the Levant shortly before Upper Palaeolithic Homo sapiens populated the region

    Dynamic microfluidic control of supramolecular peptide self-assembly

    Get PDF
    The dynamic nature of supramolecular polymers has a key role in their organization. Yet, the manipulation of their dimensions and polarity remains a challenge. Here, the minimalistic diphenylalanine building block was applied to demonstrate control of nano-assemblies growth and shrinkage using microfluidics. To fine-tune differential local environments, peptide nanotubes were confined by micron-scale pillars and subjected to monomer flows of various saturation levels to control assembly and disassembly. The small-volume device allows the rapid adjustment of conditions within the system. A simplified kinetic model was applied to calculate parameters of the growth mechanism. Direct real-time microscopy analysis revealed that different peptide derivatives show unidirectional or bidirectional axial dimension variation. Atomistic simulations show that unidirectional growth is dictated by the differences in the axial ends, as observed in the crystalline order of symmetry. This work lays foundations for the rational control of nano-materials dimensions for applications in biomedicine and material science

    Inhaled Exosomes Genetically Manipulated to Overexpress CD24 (EXO-CD24) as a Compassionate Use in Severe ARDS Patients

    No full text
    Rationale: Acute respiratory distress syndrome (ARDS) is a major global health concern with a significant unmet need. EXO-CD24 is delivered via inhalation-reduced cytokines and chemokine secretion and lung injury in ARDS and improved survival in mice models of ARDS, influenza, and sepsis. Objectives: This clinical paper aims to evaluate the potential of EXO-CD24, a novel immunomodulatory treatment, in the compassionate care of critically ill, intubated patients with post-infection-induced acute respiratory distress syndrome (ARDS). Methods: Eleven critically ill patients diagnosed with post-infection ARDS (10 with COVID-19 and one with an adenovirus-associated infection) were administered EXO-CD24 in four medical centers across Israel. The patients had multiple co-morbidities, including cancer, hypertension, diabetes, and ischemic heart disease, and met the criteria for severe ARDS according to the Berlin classification. EXO-CD24 was administered via inhalation, and adverse events related to its use were carefully monitored. Measurements and Main Results: The administration of EXO-CD24 did not result in any recorded adverse events. The median hospitalization duration was 11.5 days, and the overall mortality rate was 36%. Notably, patients treated at the Tel Aviv Medical Center (TASMC) showed a lower mortality rate of 12.5%. The WBC and CRP levels decreased in comparison to baseline levels at hospitalization, and rapid responses occurred even in patients with kidney transplants who were off the ventilator within a few days and discharged shortly thereafter. The production of cytokines and chemokines was significantly suppressed in all patients, including those who died. Among the patients at TASMC, four had kidney transplants and were on immunosuppressive drugs, and all of them fully recovered and were discharged from the hospital. Conclusions: EXO-CD24 holds promise as a potential therapeutic agent for all stages of ARDS, even in severe intubated cases. Importantly, EXO-CD24 demonstrated a favorable safety profile without any apparent side effects with promising efficacy. Furthermore, the potential of EXO-CD24 as a platform for addressing hyper-inflammatory states warrants exploration. Further research and larger-scale clinical trials are warranted to validate these preliminary findings

    Expanding the Solvent Chemical Space for Self-Assembly of Dipeptide Nanostructures

    No full text
    Nanostructures composed of short, noncyclic peptides represent a growing field of research in nanotechnology due to their ease of production, often remarkable material properties, and biocompatibility. Such structures have so far been almost exclusively obtained through self-assembly from aqueous solution, and their morphologies are determined by the interactions between building blocks as well as interactions between building blocks and water. Using the diphenylalanine system, we demonstrate here that, in order to achieve structural and morphological control, a change in the solvent environment represents a simple and convenient alternative strategy to the chemical modification of the building blocks. Diphenylalanine (FF) is a dipeptide capable of self-assembly in aqueous solution into needle-like hollow micro- and nanocrystals with continuous nanoscale channels that possess advantageous properties such as high stiffness and piezoelectricity and have so emerged as attractive candidates for functional nanomaterials. We investigate systematically the solubility of diphenylalanine in a range of organic solvents and probe the role of the solvent in the kinetics of self-assembly and the structures of the final materials. Finally, we report the crystal structure of the FF peptide in microcrystalline form grown from MeOH solution at 1 Ã… resolution and discuss the structural changes relative to the conventional materials self-assembled in aqueous solution. These findings provide a significant expansion of the structures and morphologies that are accessible through FF self-assembly for existing and future nanotechnological applications of this peptide. Solvent mediation of molecular recognition and self-association processes represents an important route to the design of new supramolecular architectures deriving their functionality from the nanoscale ordering of their components

    Controlling the physical dimensions of peptide nanotubes by supramolecular polymer coassembly

    No full text
    Molecular self-assembly of peptides into ordered nanotubes is highly important for various technological applications. Very short peptide building blocks, as short as dipeptides, can form assemblies with unique mechanical, optical, piezoelectric, and semiconductive properties. Yet, the control over nanotube length in solution has remained challenging, due to the inherent sequential self-assembly mechanism. Here, in line with polymer chemistry paradigms, we applied a supramolecular polymer coassembly methodology to modulate peptide nanotube elongation. Utilizing this approach, we achieved a narrow, controllable nanotube length distribution by adjusting the molecular ratio of the diphenylalanine assembly unit and its end-capped analogue. Kinetic analysis suggested a slower coassembly organization process as compared to the self-assembly dynamics of each of the building blocks separately. This is consistent with a hierarchal arrangement of the peptide moieties within the coassemblies. Mass spectrometry analysis demonstrated the bimolecular composition of the coassembled nanostructures. Moreover, the peptide nanotubes' length distribution, as determined by electron microscopy, was shown to fit a fragmentation kinetics model. Our results reveal a simple and efficient mechanism for the control of nanotube sizes through the coassembly of peptide entities at various ratios, allowing for the desired end-product formation. This dynamic size control offers tools for molecular engineering at the nanoscale exploiting the advantages of molecular coassembly

    Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces

    No full text
    The release of nanoscale structures from microcapsules, triggered by changes in the capsule in response to external stimuli, has significant potential for active component delivery. Here, we describe an orthogonal strategy for controlling molecular species’ release across oil/water interfaces by modulating their intrinsic self-assembly state. We show that although the soluble peptide Boc-FF can be stably encapsulated for days, its self-assembly into nanostructures triggers jet-like release within seconds. Moreover, we exploit this self-assembly-mediated release to deliver other molecular species that are transported as cargo. These results demonstrate the role of self-assembly in modulating the transport of peptides across interfaces
    corecore