38 research outputs found

    Decision analytic model for evaluation of suspected coronary disease with stress testing and coronary CT angiography.

    Get PDF
    RATIONALE AND OBJECTIVES: The aim of this study was to apply a decision analytic model for the evaluation of coronary artery disease (CAD) to define the optimal utilization of coronary computed tomographic angiography (cCTA) and stress testing. MATERIALS AND METHODS: The model tested in this study assumes that CAD is evaluated with a stress test and/or cCTA and that a patient with positive evaluation results undergoes cardiac catheterization. On the basis of values of sensitivity, specificity, and radiation dose from the published literature and test costs from the Medicare fee schedule, a decision tree model was constructed as a function of disease prevalence. RESULTS: The false-negative rate is lowest when cCTA is used as an isolated test. The false-positive rate is minimized when cCTA is used in combination with stress echocardiography. Effective radiation is minimized by use of stress electrocardiography or stress echocardiography alone or prior to cCTA. When the pretest probability of CAD is low, a strategy that uses stress echocardiography followed by cCTA minimizes the false-positive rate and effective radiation exposure, with relatively low imaging costs and with a false-negative rate only slightly higher than a strategy including stress myocardial scintigraphy. As the pretest probability of CAD increases above 20%, the false-negative rate of stress echocardiography followed by cCTA increases by \u3e5% relative to cCTA alone. CONCLUSION: Effective radiation dose and imaging costs for the workup of CAD may be minimized by an appropriate combination of stress testing and cCTA. A strategy that uses stress echocardiography followed by cCTA is most appropriate for the evaluation of low-risk patients with CAD with a pretest probability \u3c 20%, while cCTA alone may be more appropriate in intermediate-risk patients

    Cardiac risk factors and risk scores vs cardiac computed tomography angiography: a prospective cohort study for triage of ED patients with acute chest pain.

    Get PDF
    OBJECTIVE: The objective of the study is to evaluate cardiac risk factors and risk scores for prediction of coronary artery disease (CAD) and adverse outcomes in an emergency department (ED) population judged to be at low to intermediate risk for acute coronary syndrome. METHODS: Informed consent was obtained from consecutive ED patients who presented with chest pain and were evaluated with coronary computed tomography angiography (cCTA). Cardiac risk factors, clinical presentation, electrocardiogram, and laboratory studies were recorded; the Thrombolysis in Myocardial Infarction (TIMI) and Global Registry of Acute Coronary Events (GRACE) scores were tabulated. Coronary computed tomography angiography findings were rated on a 6-level plaque burden scale and classified for significant CAD (stenosis ≥50%). Adverse cardiovascular outcomes were recorded at 30 days. RESULTS: Among 250 patients evaluated by cCTA, 143 (57%) had no CAD, 64 (26%) demonstrated minimal plaque (70% stenosis). Six patients developed adverse cardiovascular outcomes. Among traditional cardiac risk factors, only age (older) and sex (male) were significant independent predictors of CAD. Correlation with CAD was poor for the TIMI (r = 0.12) and GRACE (r = 0.09-0.23) scores. The TIMI and GRACE scores were not useful to predict adverse outcomes. Coronary computed tomography angiography identified severe CAD in all subjects with adverse outcomes. CONCLUSION: Among ED patients who present with chest pain judged to be at low to intermediate risk for acute coronary syndrome, traditional risk factors are not useful to stratify risk for CAD and adverse outcomes. Coronary computed tomography angiography is an excellent predictor of CAD and outcome

    Amyloid-related imaging abnormalities in the DIAN-TU-001 trial of gantenerumab and solanezumab: lessons from a trial in dominantly inherited Alzheimer disease

    Get PDF
    OBJECTIVE: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). METHODS: 142 DIAD mutation carriers received either gantenerumab SC (n=52), solanezumab IV (n=50), or placebo (n=40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, β-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. RESULTS: Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (OR=9.1, CI[1.2, 412.3]; p=0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR=5.0, CI[1.0, 30.4]; p=0.055), as were individuals with microhemorrhage at baseline (OR=13.7, CI[1.2, 163.2]; p=0.039). No ARIA-E was observed at the initial 225mg/month gantenerumab dose, and most cases were observed at doses >675mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR>0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. INTERPRETATION: In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation. This article is protected by copyright. All rights reserved

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore