9,836 research outputs found
Anaerobic Metazoans: No longer an oxymoron
The sediments of a deep-sea hypersaline and sulfidic Mediterranean basin have yielded an unexpected discovery, the first multicellular animals living entirely without oxygen. Reported by Danovaro et al. in BMC Biology, these three new species of Loricifera add a new and remarkable dimension to anoxic ecosystems previously thought to support only unicellular life
Ewens measures on compact groups and hypergeometric kernels
On unitary compact groups the decomposition of a generic element into product
of reflections induces a decomposition of the characteristic polynomial into a
product of factors. When the group is equipped with the Haar probability
measure, these factors become independent random variables with explicit
distributions. Beyond the known results on the orthogonal and unitary groups
(O(n) and U(n)), we treat the symplectic case. In U(n), this induces a family
of probability changes analogous to the biassing in the Ewens sampling formula
known for the symmetric group. Then we study the spectral properties of these
measures, connected to the pure Fisher-Hartvig symbol on the unit circle. The
associated orthogonal polynomials give rise, as tends to infinity to a
limit kernel at the singularity.Comment: New version of the previous paper "Hua-Pickrell measures on general
compact groups". The article has been completely re-written (the presentation
has changed and some proofs have been simplified). New references added
Charge and Current Sum Rules in Quantum Media Coupled to Radiation
This paper concerns the equilibrium bulk charge and current density
correlation functions in quantum media, conductors and dielectrics, fully
coupled to the radiation (the retarded regime). A sequence of static and
time-dependent sum rules, which fix the values of certain moments of the charge
and current density correlation functions, is obtained by using Rytov's
fluctuational electrodynamics. A technique is developed to extract the
classical and purely quantum-mechanical parts of these sum rules. The sum rules
are critically tested in the classical limit and on the jellium model. A
comparison is made with microscopic approaches to systems of particles
interacting through Coulomb forces only (the non-retarded regime). In contrast
with microscopic results, the current-current correlation function is found to
be integrable in space, in both classical and quantum regimes.Comment: 19 pages, 1 figur
Programmability of Chemical Reaction Networks
Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri Nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior
Molecular identification of adenoviruses associated with respiratory infection in Egypt from 2003 to 2010.
BACKGROUND: Human adenoviruses of species B, C, and E (HAdV-B, -C, -E) are frequent causative agents of acute respiratory infections worldwide. As part of a surveillance program aimed at identifying the etiology of influenza-like illness (ILI) in Egypt, we characterized 105 adenovirus isolates from clinical samples collected between 2003 and 2010. METHODS: Identification of the isolates as HAdV was accomplished by an immunofluorescence assay (IFA) and confirmed by a set of species and type specific polymerase chain reactions (PCR). RESULTS: Of the 105 isolates, 42% were identified as belonging to HAdV-B, 60% as HAdV-C, and 1% as HAdV-E. We identified a total of six co-infections by PCR, of which five were HAdV-B/HAdV-C co-infections, and one was a co-infection of two HAdV-C types: HAdV-5/HAdV-6. Molecular typing by PCR enabled the identification of eight genotypes of human adenoviruses; HAdV-3 (n = 22), HAdV-7 (n = 14), HAdV-11 (n = 8), HAdV-1 (n = 22), HAdV-2 (20), HAdV-5 (n = 15), HAdV-6 (n = 3) and HAdV-4 (n = 1). The most abundant species in the characterized collection of isolates was HAdV-C, which is concordant with existing data for worldwide epidemiology of HAdV respiratory infections. CONCLUSIONS: We identified three species, HAdV-B, -C and -E, among patients with ILI over the course of 7 years in Egypt, with at least eight diverse types circulating
Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization
Modern intense ultrafast pulsed lasers generate an electric field of
sufficient strength to permit tunnel ionization of the valence electrons in
atoms. This process is usually treated as a rapid succession of isolated
events, in which the states of the remaining electrons are neglected. Such
electronic interactions are predicted to be weak, the exception being
recollision excitation and ionization caused by linearly-polarized radiation.
In contrast, it has recently been suggested that intense field ionization may
be accompanied by a two-stage `shake-up' reaction. Here we report a unique
combination of experimental techniques that enables us to accurately measure
the tunnel ionization probability for argon exposed to 50 femtosecond laser
pulses. Most significantly for the current study, this measurement is
independent of the optical focal geometry, equivalent to a homogenous electric
field. Furthermore, circularly-polarized radiation negates recollision. The
present measurements indicate that tunnel ionization results in simultaneous
excitation of one or more remaining electrons through shake-up. From an atomic
physics standpoint, it may be possible to induce ionization from specific
states, and will influence the development of coherent attosecond XUV radiation
sources. Such pulses have vital scientific and economic potential in areas such
as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic
Simple, Fast and Accurate Implementation of the Diffusion Approximation Algorithm for Stochastic Ion Channels with Multiple States
The phenomena that emerge from the interaction of the stochastic opening and
closing of ion channels (channel noise) with the non-linear neural dynamics are
essential to our understanding of the operation of the nervous system. The
effects that channel noise can have on neural dynamics are generally studied
using numerical simulations of stochastic models. Algorithms based on discrete
Markov Chains (MC) seem to be the most reliable and trustworthy, but even
optimized algorithms come with a non-negligible computational cost. Diffusion
Approximation (DA) methods use Stochastic Differential Equations (SDE) to
approximate the behavior of a number of MCs, considerably speeding up
simulation times. However, model comparisons have suggested that DA methods did
not lead to the same results as in MC modeling in terms of channel noise
statistics and effects on excitability. Recently, it was shown that the
difference arose because MCs were modeled with coupled activation subunits,
while the DA was modeled using uncoupled activation subunits. Implementations
of DA with coupled subunits, in the context of a specific kinetic scheme,
yielded similar results to MC. However, it remained unclear how to generalize
these implementations to different kinetic schemes, or whether they were faster
than MC algorithms. Additionally, a steady state approximation was used for the
stochastic terms, which, as we show here, can introduce significant
inaccuracies. We derived the SDE explicitly for any given ion channel kinetic
scheme. The resulting generic equations were surprisingly simple and
interpretable - allowing an easy and efficient DA implementation. The algorithm
was tested in a voltage clamp simulation and in two different current clamp
simulations, yielding the same results as MC modeling. Also, the simulation
efficiency of this DA method demonstrated considerable superiority over MC
methods.Comment: 32 text pages, 10 figures, 1 supplementary text + figur
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems
A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud
\u
Treatment outcomes of new tuberculosis patients hospitalized in Kampala, Uganda: a prospective cohort study.
BACKGROUND: In most resource limited settings, new tuberculosis (TB) patients are usually treated as outpatients. We sought to investigate the reasons for hospitalisation and the predictors of poor treatment outcomes and mortality in a cohort of hospitalized new TB patients in Kampala, Uganda. METHODS AND FINDINGS: Ninety-six new TB patients hospitalised between 2003 and 2006 were enrolled and followed for two years. Thirty two were HIV-uninfected and 64 were HIV-infected. Among the HIV-uninfected, the commonest reasons for hospitalization were low Karnofsky score (47%) and need for diagnostic evaluation (25%). HIV-infected patients were commonly hospitalized due to low Karnofsky score (72%), concurrent illness (16%) and diagnostic evaluation (14%). Eleven HIV uninfected patients died (mortality rate 19.7 per 100 person-years) while 41 deaths occurred among the HIV-infected patients (mortality rate 46.9 per 100 person years). In all patients an unsuccessful treatment outcome (treatment failure, death during the treatment period or an unknown outcome) was associated with duration of TB symptoms, with the odds of an unsuccessful outcome decreasing with increasing duration. Among HIV-infected patients, an unsuccessful treatment outcome was also associated with male sex (P = 0.004) and age (P = 0.034). Low Karnofsky score (aHR = 8.93, 95% CI 1.88 - 42.40, P = 0.001) was the only factor significantly associated with mortality among the HIV-uninfected. Mortality among the HIV-infected was associated with the composite variable of CD4 and ART use, with patients with baseline CD4 below 200 cells/µL who were not on ART at a greater risk of death than those who were on ART, and low Karnofsky score (aHR = 2.02, 95% CI 1.02 - 4.01, P = 0.045). CONCLUSION: Poor health status is a common cause of hospitalisation for new TB patients. Mortality in this study was very high and associated with advanced HIV Disease and no use of ART
World radiocommunication conference 12 : implications for the spectrum eco-system
Spectrum allocation is once more a key issue facing the global telecommunications industry. Largely overlooked in current debates, however, is the World Radiocommunication Conference (WRC). Decisions taken by WRC shape the future roadmap of the telecommunications industry, not least because it has the ability to shape the global spectrum allocation framework. In the debates of WRC-12 it is possible to identify three main issues: enhancement of the international spectrum regulatory framework, regulatory measures required to introduce Cognitive Radio Systems (CRS) technologies; and, additional spectrum allocation to mobile service. WRC-12 eventually decided not to change the current international radio regulations with regard to the first two issues and agreed to the third issue. The main implications of WRC-12 on the spectrum ecosystem are that most of actors are not in support of the concept of spectrum flexibility associated with trading and that the concept of spectrum open access is not under consideration. This is explained by the observation that spectrum trading and spectrum commons weaken state control over spectrum and challenge the main principles and norms of the international spectrum management regime. In addition, the mobile allocation issue has shown the lack of conformity with the main rules of the regime: regional spectrum allocation in the International Telecommunication Union (ITU) three regions, and the resistance to the slow decision making procedures. In conclusion, while the rules and decision-making procedures of the international spectrum management regime were challenged in the WRC-12, the main principles and norms are still accepted by the majority of countries
- …